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Abstract

Negative monetary policy rates have been introduced in various advanced economies since

the mid 2010s. Previous studies have shown that banks are hesitant to set negative deposit

rates, implying losses in deposit taking that erode equity and eventually have a negative

impact on the lending of capital constrained banks. I show that when banks are not

constrained by their equity, equilibrium loan rates are lower under negative interest rates

in the presence of a deposit ZLB (D-ZLB) than in its absence. Thus, policy rate cuts

in negative territory might stimulate the economy even more than in positive territory,

provided that sufficiently many banks are not capital constrained. In a calibrated dynamic

model, the effect is large and dominates the effect due to equity erosion, with the D-ZLB

increasing aggregate loan supply by on average 4% when policy rates are negative.
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1 Introduction

Negative monetary policy rates, long thought to be impossible in practice, have become

a reality in many advanced economies since the mid 2010s. The ECB’s monetary policy

rate, for example, was zero or negative for a decade, with a trough of -0.5%. Banks play

a central role in the transmission of monetary policy, and it is of prime interest for central

banks to thoroughly study the impact of negative interest rate policy (NIRP) on banks’

lending.

A recurrent finding of empirical studies is banks’ hesitance to set negative deposit rates,

which suggest the existence of a deposit zero lower bound (D-ZLB).1 With such a bound,

conventional wisdom suggests that negative interest rate policy can be less expansionary

than conventional monetary policy (Ulate, 2021) or even contractionary (Abadi et al., 2023).

As banks receive negative rates on their reserves from the central bank, but still have to

offer a zero interest rate to their customers, they make losses in their deposit-taking. This

in turn erodes their equity and eventually forces them to reduce lending to comply with

regulatory capital requirements.

However, empirical evidence regarding the impact of the D-ZLB on lending is mixed:

Some studies find that banks more exposed to negative policy rates increase loan supply

vis-a-vis less exposed banks (Hong and Kandrac, 2021; Demiralp et al., 2021; Bottero et al.,

2022; Schelling and Towbin, 2022; Grandi and Guille, 2023), others find the opposite result

(Heider et al., 2019; Basten and Mariathasan, 2023; Eggertsson et al., 2024).2 But then,

1This has been documented in different contexts by Eggertsson et al. (2024); Heider et al.
(2019); Hong and Kandrac (2021) and Basten and Mariathasan (2023).

2 Measures of exposure to negative interest rates differ in the empirical literature. Hong and
Kandrac (2021) use the cross-sectional variation in bank’s share prices around the central bank’s
announcement of NIRP. Bottero et al. (2022) use the ex-ante interbank position and liquid assets.
Heider et al. (2019), Eggertsson et al. (2024) and Grandi and Guille (2023) use the amount of
deposits relative to total assets. Demiralp et al. (2021) use both central bank reserves in excess
of regulatory requirements and retail deposits relative to total assets. Basten and Mariathasan
(2023) exploit tiered remuneration of reserves to construct the share of a bank’s reserves affected
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how do negative interest rates affect lending by commercial banks? This paper develops

a quantitative model in which two different forces interact in opposite directions, making

the resulting dominant force contingent on parameters and, thus, providing a possible

explanation to the divergent findings in the empirical literature.

Specifically, this paper identifies and quantifies the importance of a novel amplification

channel that affects banks under negative interest rates when (a) they face a D-ZLB, (b)

their probability of failure is not zero, and (c) they are not equity-constrained. Through

this channel, banks’ supply of risky loans increases more strongly after a policy rate cut

when their D-ZLB is binding. This mechanism breaks down when banks’ capacity to lend is

constrained by their equity, in which case the equity erosion channel emphasized by previous

theoretical contributions (Ulate, 2021; Abadi et al., 2023) entirely determines their lending,

making it fall as policy rates further decline into negative territory. When the channel

identified in this paper dominates, policy rate cuts into negative (or more negative) interest

rates might stimulate the economy even more than in positive territory. The dominance of

this effect requires that sufficiently many banks are not capital constrained, meaning that

they have (or are able to raise) the equity needed to meet capital requirements when they

wish to increase their lending.

The amplification channel is related to limited-liability risk-taking distortions that are

first established in a stylized static model (henceforth referred to as illustrating model), in

which banks are financed by insured deposits, invest in risky loans, and also invest in a safe

asset remunerated at the policy rate. Since the bank is exclusively funded with deposits in

the illustrating model, that is, there are no capital requirements, the operation of the equity

erosion channel emphasized by the previous literature is shut down in this illustrating model

by NIRP. Schelling and Towbin (2022) use both the measures of Heider et al. (2019) and Basten
and Mariathasan (2023). Eggertsson et al. (2024), unlike the other studies cited above, additionally
conduct an event study with daily data for loan rates (but cannot do so for loan volumes).
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– equity and capital requirements will be introduced in the quantitative model discussed

below.

Banks are local monopolists in loan markets, monopolistic competitors in deposit mar-

kets (as in e.g. Abadi et al., 2023), and are subject to a lower bound on deposit rates. An

exogenously distributed fraction of the risky loans defaults. A bank fails itself whenever

the fraction of defaulting loans is large enough to make its residual net worth negative.

In this framework, I show analytically that policy rate cuts are expansionary, unless

the representative bank fails with certainty.3 Further, when the bank’s default probability

is also non-zero and the D-ZLB is binding, the D-ZLB induces the bank to charge a lower

loan rate for a given policy rate. Under the same conditions, and everything else equal,

policy rate changes have larger effects on loan rates. The amplification channel is therefore

only operative when banks have a non-trivial probability of failure.

The key difference to previous models studying bank lending under negative interest

rates – in which the amplification effect emphasized here did not arise – is that loans

are risky, and the bank itself fails when a sufficiently high proportion of its loan portfolio

defaults. The amplification effect arises because the losses in deposit taking due to the D-

ZLB lead the representative bank to fail for loan default rates for which it otherwise would

not have failed. Since the bank is protected by limited liability, it’s payoff is zero when it

fails. Hence, by making the bank fail for lower loan default rates, the D-ZLB shifts losses

from the bank to the deposit insurance agency, effectively increasing the conditional-on-

bank-solvency profitability of loans for the bank. Thus, the bank charges a lower loan rate

when the D-ZLB is binding than in the alternative scenario when it is not. The transmission

3The bank may fail with certainty if losses in deposit taking become so high that profits from
lending can never exceed them, such that the bank is indifferent between any loan rate. A similar
point was raised by Repullo (2020b).
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of monetary policy changes are thus amplified when the D-ZLB is binding, due to the higher

(lower) losses in deposit taking when the policy rate is lowered (raised).4

After establishing the novel amplification effect, I assess it’s quantitative relevance rel-

ative to the equity erosion channel emphasized by, among others, Ulate (2021) and Abadi

et al. (2023). The equity erosion channel requires both capital requirements and equity

dynamics to be salient: losses in deposit taking erode equity over time until the scarcity of

banks’ equity forces them to reduce lending to comply with capital requirements. Hence,

I develop a dynamic, quantitative extension of the illustrating model in which banks are

financed by equity, as well as insured deposits, in order to comply with a regulatory capital

requirement (which requires the bank to have a minimum amount of equity funding per

unit of lending). The asset side is kept identical to the illustrating model: the bank invests

in risky loans and a safe asset remunerated at the monetary policy rate. The latter is

exogenous and evolves according to a Markov chain.

As before, in the quantitative model banks have market power in loan and deposit

markets, and face a D-ZLB. Loan default risk is modeled following the Vasicek (2002)

single risk factor model. Banks are infinitely lived, but are shut down forever if their net-

worth becomes negative. This may happen either because of loan defaults, losses in deposit

taking or a combination of both.

I assume that banks can raise additional equity at a convex cost, while paying out

dividends is costless. Equity dynamics are therefore fully endogenous here, whereas Abadi

et al. (2023) assume a constant dividend payout ratio and exogenous equity injections.

Thus, in contrast to the illustrating model, in the quantitative model banks may restrict

lending when their equity falls low because it is too expensive to raise sufficient equity to

4When the D-ZLB is not binding, the deposit rate RD is a constant fraction of the policy rate
R, such that the deposit spread R−RD (and thus the bank’s profit in deposit taking) is increasing
with R. However, the change in the deposit spread is systematically larger once the D-ZLB binds,
since then the transmission into deposit rates of changes in R breaks down.
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support the loan supply level that they would choose if having plenty of available equity –

this gives rise to the equity erosion channel. Apart from their loan pricing decisions, banks

are hence able to react to losses from deposits under negative interest rates by adjusting

capitalization through dividend policy and equity injections. These decisions impact on

loan supply and default probabilities beyond the more mechanical equity erosion effect of

the losses in deposit taking explored in previous studies (e.g. Abadi et al. 2023).

The model is calibrated to Germany.5 The quantitative analysis compares two scenarios:

one in which banks are subject to a D-ZLB as observed in the real world (e.g. Heider et al.,

2019) and one in which banks can raise deposits at negative deposit rates. Through the

lens of the model, the only difference between NIRP and conventional monetary policy is

the breakdown of the transmission into deposit rates under NIRP. Hence, the comparison

of the two scenarios (D-ZLB vis-a-vis no D-ZLB) serves to assess how the effects of negative

interest rate policy differ from conventional monetary policy.

The main conclusions of the quantitative analysis are four. First, banks that are suf-

ficiently capitalized, such that their capital requirement is slack and they would thus not

supply higher loan volumes even if they had more capital, supply significantly higher loan

volumes under NIRP when subject to a D-ZLB: the loan rate they charge decreases by 10

basis points due to the D-ZLB. Second, 28.6% of banks supply lower loan volumes during

the average spell of negative interest rates, as they are capital-constrained and have to

restrict lending due to the equity-eroding effects of losses in deposit taking. However, the

first effect dominates in the quantitative results. I find that the aggregate loan supply is on

average 4% higher due to the D-ZLB when policy rates are negative. Third, bank default

5In Germany, banks have a particularly high deposit-to-loan ratio, whereas in the Euro Area
the average deposit-to-loan ratio is below 1 — in the baseline model this would imply that risky
banks have access to non-deposit financing at the riskless interest rate. Since this is inconsistent,
and to keep the model parsimonious, the baseline model is calibrated to Germany. As a robustness
check, I build an extension of the model in which debt is fairly priced. This extension is calibrated
to the Euro Area. The results are similar.
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probabilities are 28 basis points higher under NIRP and a D-ZLB, up from a baseline level

of 49 bps. Fourth, the impact of the D-ZLB on loan supply under negative interest rates

is hump-shaped over time: the amplification is strongest initially, and is weakened by the

equity erosion channel over time. For a cut to −0.21%, the equity erosion channel finally

dominates after 9 years, whereas for a cut to −0.5% it dominates after already four years.

Nevertheless, both policy rate cuts lead to higher aggregate loan supply even after 50 years.

Taken together, the results suggest that negative interest rate policy is even more effec-

tive than conventional monetary policy at increasing credit supply on average. However,

due to capital constraints being binding for some banks, its effects on the cross-section of

banks are heterogeneous. The fraction of banks that decrease loan supply due to equity

erosion is initially growing over time, such that the stimulating effect of NIRP on bank

lending becomes weaker over time. Further, NIRP has a sizable cost in terms of financial

stability, due to the large increase in bank default probabilities.

This paper contributes to the literature on the pass-through of (negative) monetary

policy rates into banks’ lending rates. Previous theoretical models, such as Repullo (2020b);

Ulate (2021); Eggertsson et al. (2024); Onofri et al. (2023) and Abadi et al. (2023), have

highlighted that the transmission of negative policy rates into loan rates is impaired due

to losses in deposit taking under negative interest rates eroding equity in the presence of a

regulatory capital constraints. In these models, this does not necessarily imply a reduction

in bank lending. This is because profits from lending (Ulate, 2021) or reduced funding

costs from alternative sources, including bank bonds (Onofri et al., 2023; Eggertsson et al.,

2024), can prevent a deterioration in bank equity over time. In models in which this is

the case, e.g. in Ulate (2021), the models predict that negative interest rate policy is less

expansionary than conventional monetary policy. Neither of these theoretical contributions

considers the interplay of monetary policy and bank risk. This paper adds to the literature

by showing that in this context a novel amplification channel arises through which risky
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banks with deposit rates stuck at zero increase their (unconstrained) loan supply more than

they would have in absence of the D-ZLB after a policy rate cut. The paper also quantifies

the importance of this channel vis-a-vis the equity erosion channel emphasized by previous

contributions.

As discussed above, the empirical literature has found mixed evidence regarding the

pass-through of NIRP into lending rates. This paper contributes to understanding these

divergent findings. Concretely, the amplification channel rationalizes empirical findings of

increased loan supply of banks more exposed to negative interest rates (Hong and Kandrac,

2021; Demiralp et al., 2021; Bottero et al., 2022; Schelling and Towbin, 2022; Grandi and

Guille, 2023). Through the lens of previous models of negative interest rates that focus

on different aspects of the equity erosion channel (Repullo, 2020b; Ulate, 2021; Eggertsson

et al., 2024; Abadi et al., 2023), increased lending of banks more exposed to NIRP as

documented in different contexts is difficult to rationalize. While in Abadi et al. (2023),

Onofri et al. (2023) and Eggertsson et al. (2024) monetary policy cuts can increase bank

equity, at least in the short run, these effects do not operate differently under negative

interest rate policy than under conventional monetary policy.6 Hence, such explanations

would arguably be at odds with placebo-exercises confirming abnormal effects of NIPR

(Hong and Kandrac, 2021; Heider et al., 2019).

This paper also contributes to the literature on the financial stability implications of

negative interest rate policy. The empirical literature has consistently found evidence for

an increase in bank riskiness (Nucera et al., 2017; Hong and Kandrac, 2021; Basten and

Mariathasan, 2023; Schelling and Towbin, 2022; Heider et al., 2019). Further, evidence

for portfolio reallocation towards riskier assets is found by Bottero et al. (2022); Basten

6In Abadi et al. (2023) such an increase can arise due to capital gains in fixed-rate long-term
assets. In Onofri et al. (2023) and Eggertsson et al. (2024), it can arise because of a reduction in
the cost of non-deposit funding.
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and Mariathasan (2023); Schelling and Towbin (2022); Heider et al. (2019). However, the

financial stability implications of negative interest rates have not been studied through

the lens of a quantitative model. The amplification channel emphasized here arises in the

model because of an increase in the bank’s default probability, and implies a reallocation

of assets from the safe asset to risky loans. Hence, the model provides a framework that

jointly explains the empirical findings of increased bank default probabilities, a portfolio-

reallocation towards riskier assets and an increase in bank lending.7

While the focus of this paper is highlighting the amplification channel, the model is

not inconsistent with contractionary effects of negative interest rate policy (Basten and

Mariathasan, 2023; Eggertsson et al., 2024; Heider et al., 2019). Through the lens of

the model, such effects could reflect (a) portfolio reallocation away from the particular

type of loans studied in a given empirical contribution (e.g. away from syndicated loans in

Heider et al., 2019), or (b) a sufficiently large fraction of banks constrained by their capital

requirement.8

The rest of the paper is organized as follows: Section 2 presents a stylized model to study

the loan supply of banks unconstrained by capital requirements under negative interest

rates. Section 3 presents the quantitative model. The model’s calibration is described in

Section 3.2. Section 3.3 presents the results of the numerical analysis. Section 4 discusses

the results of both the stylized and the quantitative model, and relates them to the empircal

7Regarding increased bank default probabilities, the mechanism exposed here is complemen-
tary to existing explanations of increased risk taking linked to limited liability (Repullo, 2004;
Dell’Ariccia et al., 2014).

8To be more precise, the diverging findings for the EA of Heider et al. (2019) (lower loan supply
in the syndicated loan market of more exposed banks) and Demiralp et al. (2021) (higher loan
supply overall of more exposed banks) for example might point to a portfolio reallocation away
from syndicated loans, rather than effects due to capital requirements. Eggertsson et al. (2024)
focus on lending to households, hence it cannot be ruled out that their result of a decrease in
bank lending to households reflects a portfolio reallocation, rather than a decrease in total lending.
Schelling and Towbin (2022) argue that the diverging findings for Switzerland in their paper and
Basten and Mariathasan (2023) possibly reflect heterogeneous demand effects, which cannot be
controlled for in the latter study.
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literature. Section 5 concludes. Lastly, the Appendices contain additional tables and figures,

as well as proofs of all lemmas, propositions and corollaries.

2 The Amplification Mechanism in a Simple Model

This section illustrates in the context of a simple static partial equilibrium model how

the presence of a D-ZLB can amplify (rather then dampen) the impact of interest rate cuts

on bank lending. In this model, the presence of the D-ZLB implies that banks cannot fix

gross deposit rates below some
¯
RD (so

¯
RD = 1 corresponds to to the typical case in which

net deposit rates cannot be negative)). While Section 2.1 establishes the novel channels that

operate in the quantitative model of Section 3 formally, Section 2.2 discusses and illustrates

some additional results regarding monetary policy transmission with a numerical example.

2.1 Static Model

Consider an individual bank that operates between two dates t = 0, 1. At t = 0 the

bank is financed by insured deposits D remunerated at a gross rate RD, invests in risky

loans L that pay a gross loan rate RL and may also invest in a safe asset S remunerated at

the policy rate R.

The bank is a monopolist in a local loan market where it faces a downward sloping

iso-elastic loan demand function of the form L(RL) = AR−ϵ
L , ϵL > 1. At t = 1, a share ω

of its loans default, in which case the corresponding payoff is zero. The random variable ω

is assumed to have full support in [0, 1] and it’s pdf and cdf will be denoted by f(ω) and

F (ω), respectively. To isolate the implications of the mechanism that I aim to illustrate,

the bank faces no capital requirement.

As in Abadi et al. (2023), I assume that the bank competes in deposit markets in

a monopolistic fashion with a unit continuum of identical other banks. Thus, the bank is
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facing an upward sloping deposit function D(RD) =
(

RD
RD

)−ϵD
D̄, with ϵD < −1 and D̄ > 0,

where RD is the CES index of deposit rates, which is taken as given by each individual

bank. Reflecting the D-ZLB, banks cannot offer deposit rates below
¯
RD.

Each bank is managed in the interest of its risk neutral shareholders, who enjoy limited

liability. When a bank defaults at t = 1, its assets are repossessed by a deposit insurance

agency, who pays all its depositors in full. The bank maximizes its expected value at t = 1:

max
RL,RD≥

¯
RD,S≥0

∫ 1

0
max{(1− ω)RLL(RL) +RS −RDD(RD), 0}dF (ω) (1)

subject to the balance sheet constraint:

L(RL) + S = D(RD) (2)

To solve the bank’s optimization problem, I will proceed in two steps. The constraint S ≥ 0

is guessed to be non-binding, which can ex-post be shown to imply a parameter restriction

on D̄. Using this guess to substitute S from (2) into the objective function (1), the objective

function can be written as:

max
RL,RD≥

¯
RD

∫ 1

0
max{(RL −R)L(RL) + (R−RD)D(RD)− ωRLL(RL), 0}dF (ω) (3)

First the optimal deposit rate can be characterized – it is independent of the bank’s choice of

RL. Let it be denoted R̂D. The results regarding the optimal deposit rate are summarized

in the following lemma:

Lemma 1. Assuming the bank does not always fail, the bank’s optimal deposit rate is:

R̂D(R) = max(R∗
D(R),

¯
RD) (4)
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where

R∗
D(R) =

ϵD
ϵD − 1

R (5)

is the bank’s optimal deposit rate in the absence of a D-ZLB. Moreover, R̂D(R) = R∗
D(R)

for all R ≥ R∗ and R̂D(R) =
¯
RD for all R < R∗, where R∗ = ϵD−1

ϵD ¯
RD.

By symmetry, all monopolistic competitors in the deposit market offer the same deposit

rate. Hence the CES index of deposit rates is RD = R̂D(R) and an individual bank’s profits

from deposits are given by (R− R̂D(R))D̄.

Next, it will be shown that the deposit rate does impact the optimal loan rate, and

therefore monetary policy transmission, if the D-ZLB is binding and the bank has an

interior default probability. The channel works through the impact that the deposit rate

has on such a probability. The bank defaults if

(RL −R)L(RL) + (R−RD)D̄ − ωRLL(RL) < 0,

that is if

ω > ω̃ =
(RL −R)L(RL) + (R− R̂D)D̄

RLL(RL)
(6)

When ω̃ > 1 the bank never fails since ω has support in the interval [0, 1] – this may happen

if profits from deposits (R− R̂D)D̄ are so large that the bank can repay RL(RL) even if all

loans default. Of course, ω̃ > 1 cannot happen under policy rates R <
¯
RD. On the other

hand, when R <
¯
RD profits from deposits may be sufficiently negative, such that ω̃ < 0,

and the bank always fails.

Using previous results, it is convenient to write the objective function of the bank as:

Π(RL) =

∫ ω̄

0
[(RL(1− ω)−R)L(RL) + (R− R̂D)D(R̂D)]dF (ω) (7)
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where ω̄ = min(max(ω̃, 0), 1), that is:

ω̄ =


0 if ω̃ < 0

ω̃ if 0 ≤ ω̃ ≤ 1

1 if ω̃ > 1

(8)

Then, the following proposition about the existence of an optimal loan rate can be proven:

Proposition 1. If there exists a RL such that (RL−R)L(RL)+ (R− R̂D)D(R̂D) > 0, the

problem maxRL
Π(RL) has a global maximum at R̂L ∈ (R,∞), which fulfills:

(1− ωLL)R̂L =
ϵL

ϵL − 1
R (9)

where ωLL is the expected loan default rate in the bank’s non-default region

ωLL = E[ω | ω ≤ ω̄] =
1

F (ω̄)

∫ ω̄

0
ωdF (ω) (10)

The condition for existence of an optimal loan rate R̂L ∈ (R,∞) is always satisfied

under policy rates above the lower bound on deposits
¯
RD. However, when the bank makes

too high losses in deposit taking, such that profits from lending can never exceed these

losses, the bank always fails. In that case, the bank is indifferent between any loan rate.

In general, it is neither guaranteed that the solution to (9) is unique, nor that it involves

Π′′(R̂L) ̸= 0 (see Appendix C).9. In what follows it is assumed that parameters are such

that a unique R̂L solving (9) exists, and Π′′(R̂L) < 0.10

9While there is a unique local maximum R̂L in all my numerical simulations, the sign of Π′′(R̂L)
is generally ambiguous such that multiple solutions of (9) might arise when ωLL is increasing in R̂L.
A unique local maximum involving Π′′(R̂L) ̸= 0 is for example guaranteed when ω ∼ Unif [0, 1]
and R <

¯
RD (see Appendix C)

10This is required to use the implicit function theorem to characterize changes in the optimal
loan rate.
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Using (6) and Lemma 1, it follows that a stricter lower bound
¯
RD on the deposit rate

decreases the cutoff ω̃ for any given loan rate when the lower bound is binding:

∂ω̃

∂
¯
RD

∣∣∣∣
R̂L

=


− D̄

R̂LL(R̂L)
if R < R∗

0 if R > R∗
(11)

which follows from (6) and Lemma 1. By the definition of ω̄, the D-ZLB thus increases the

banks’ default probability for a given loan rate, whenever the default probability is interior

(as opposed to strictly zero or one).11 This in turn decreases the conditionally expected

loan default rate ωLL by (10): a stricter lower bound means that (for a given loan rate) the

bank defaults for loan default rates for which the bank would otherwise not have defaulted,

which lowers the loan default rate ωLL that the bank expects conditional on not defaulting

itself.

Equation (9) suggests that whenever the D-ZLB induces such a decrease in ωLL, it also

affects the loan rate charged by the bank. This is summarized in the following proposition:

Proposition 2. Assume a unique interior solution in R̂L exists such that Π′′(R̂L) < 0 and

the bank has a non-trivial probability of failure (ω̃ ∈ (0, 1)). Then a stricter deposit lower

bound
¯
RD lowers the optimal loan rate if and only if the D-ZLB constraint is binding:

∂R̂L

∂
¯
RD


< 0 if R < R∗

= 0 if R > R∗
(12)

11Technically:

∂ω̄

∂
¯
RD

∣∣∣∣
R̂L


= 0 if R > R∗ or ω̃ > 1 or ω̃ < 0

does not exist if R = R∗ or ω̃ = 0 or ω̃ = 1

< 0 else

The non-existence of the partial derivative if ω̃ ∈ {0, 1} is due to the non-differentiability of the
function max(x, 0) at 0 and the function min(x, 1) at 1.
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The proposition implies that when a bank subject to a D-ZLB has an interior default

probability, a cut from any rate above R∗ to any rate below R∗ is more expansionary than

in the alternative scenario when banks are not subject to a D-ZLB. To see this, note that

the scenario in which banks are not subject to a D-ZLB corresponds to the case
¯
RD → −∞.

For policy rates above R∗, banks charge the same loan rate in both scenarios (since the

loan rate does not change with the lower bound on deposits when R > R∗), while for

policy rates below R∗ banks will charge a lower loan rate in the scenario in which they are

subject to a D-ZLB (since when R < R∗ the loan rate decreases when the lower bound on

deposits increases). In the real world scenario in which banks cannot fix negative deposit

rates (
¯
RD = 1), such a cut from a policy rate above R∗ to a rate below R∗ may or may not

be a cut into negative policy rates, since R∗ = ϵD−1
ϵD

> 1.

However, while monetary policy cuts into policy rates below the deposit lower bound are

(ceteris paribus) more expansionary, such cuts have adverse implications for bank default

probabilities. It was already discussed above that ω̄, and thus the bank’s failure probability,

is decreased by the D-ZLB for a given loan rate. Indeed, as a corollary to Proposition 1, it

can be shown that the D-ZLB decreases ω̄ unconditionally, when it is interior:

Corollary 1. Assume a unique interior solution in R̂L exists such that Π′′(R̂L) < 0 and

the bank has a non-trivial probability of failure (ω̃ ∈ (0, 1)), then the D-ZLB lowers the

bank’s default threshold:

∂ω̄

∂
¯
RD

=
∂ω̄

∂RD︸ ︷︷ ︸
<0

∂RD

∂
¯
RD

+
∂ω̄

∂RL︸ ︷︷ ︸
>0

∂RL

∂
¯
RD︸ ︷︷ ︸
≤0


< 0 if R < R∗

= 0 if R > R∗
(13)

This is due to a combination of the direct impact on the bank’s default probability of

paying higher deposit rates, and the impact of the lower loan rate the bank offers as implied

by Proposition 2.
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While the results in Proposition 1 and Corollary 1 are those that operate in the quanti-

tative model of Section 1, some additional results regarding monetary policy transmission

are discussed and illustrated in the following subsection.

2.2 Monetary Policy Transmission: Numerical Example

A numerical example illustrating monetary policy transmission in alternative scenarios

is provided in Figure 1, which plots the loan volume L(R̂L), the loan rate R̂L and the bank’s

default probability (EDF) against the policy rate R. The figure compares banks that may

not set deposit rates below 1 (
¯
RD = 1) with banks that are not subject to a lower bound

on deposits, and hence always set RD = R∗
D (as defined in Lemma 1). In the left column

of the figure, banks are safe (that is Pr(ω < ω̄) = 0), while in the right column banks are

risky (that is Pr(ω < ω̄) ∈ (0, 1)). To this end, the numerical example assumes that the

loan default distribution follows the Vasicek (2002) distribution with

F (ω) = Φ

(√
1− ρΦ−1(ω)− Φ−1(p)

√
ρ

)
(14)

where Φ(·) is the standard normal cdf, and ρ and p are parameters. The cdf F (ω) converges

to a one-point distribution as ρ → 0 (Vasicek, 2002), such that banks have a deterministic

payoff in the limit.

The parametrization used for this numerical example is ϵD = −100 (implying a deposit

spread of 1% when the D-ZLB is not binding), D̄ = 2.5, p = 0.01 (i.e., a 1% loan default

probability), ϵL = 50 (implying a loan rate spread of about 3% for safe banks) and A = 4.17

(implying that the constraint S > 0 is always satisfied). For risky banks, I set ρ = 0.2,

while for safe banks ρ → 0.12

12The Basel II regulatory framework (Basel Committee on Banking Supervision, 2004) specifies
a formula for the parameter ρ based on the loan default probability p, which would yield ρ ≈ 0.19
for p = 0.01.
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(a) Loan Volume Safe Banks (b) Loan Volume Risky Banks

(c) Loan Rate Safe Banks (d) Loan Rate Risky Banks

(e) Expected Default Probability Safe
Banks

(f) Expected Default Probability Risky
Banks

Figure 1: Numerical Example, Stylized Model

In the left column (safe banks), the loan default probability is 1% with probability 1,
while in the right column (risky banks) the loan default probability follows a Vasicek
(2002) distribution with mean 1%.
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As Figure 1 shows, the loan rate is increasing in the policy rate in all scenarios. Hence,

there is no reversal. Indeed, it can be shown that:

Corollary 2. Assume a unique interior solution in R̂L exists such that Π′′(R̂L) < 0 and

the bank does not fail with certainty, i.e. (ω̃ ∈ (0, 1]). Then, if

∂ωLL

∂ω̄
<

ϵL
ϵL − 1

(15)

monetary policy is expansionary:

∂R̂L

∂R
> 0 for all R ̸= R∗ (16)

The condition (15) is sufficient but not necessary for monetary policy to be expan-

sionary.13 The first part of Corollary 2 then implies that monetary policy cuts are always

expansionary – and thus there is no reversal – as long as banks do not fail with certainty

(in which case the bank is indifferent between any loan rate).

The right panel of Figure 1 highlights a clear kink of monetary policy transmission at

R = R∗ (the red vertical line). There is no such kink in the left panel. The figure thus

emphasizes that the D-ZLB only amplifies monetary policy cuts into negative rates when

banks have an interior default probability Pr(ω < ω̄) ∈ (0, 1).

The figure further shows that when banks have such an interior default probability, the

loan rate in the D-ZLB scenario falls further and further below the loan rate in the scenario

without D-ZLB. The reason is a fundamental difference in the transmission of monetary

policy rates above and below R∗, as shall be discussed below.14 The figure shows that the

default probability of risky banks begins increasing once the D-ZLB is binding relative to the

13The condition is for example fulfilled for the uniform distribution.
14This fundamental difference is also the reason for the non-existence of the derivative ∂

ˆ
RL

∂R at
R = R∗ implied by Corollary 2.
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default probability prevailing in the alternative scenario in which the bank sets RD = R∗
D.

This reflects Corollary 1. It can be conjectured from (9)) that increased bank riskiness

(everything else equal) lowers the loan rate but by the same token weakens monetary policy

transmission.15. However, despite the sizable decrease in the default threshold shown in

Figure 1, monetary policy transmission is almost linear below R∗ – suggesting that the

impact of the level of bank riskiness on monetary policy transmission is limited.

To understand the reason for the fundamental difference of transmission of policy rates

above and below R∗, it is useful to consider two scenarios in which a bank faces the same

policy rate and has the same default probability before the policy rate cut, but is subject to

a binding D-ZLB in one scenario but not in the other. An increase in the policy rate makes

banks safer in both scenarios and thus pushes up loan rates further (by Eq. (9)) through

changes in the deposit rate spread R− R̂D. By Lemma 1, these are

∂(R̂D −R)

∂R
=


1− ϵD

ϵD−1

1 if R < R∗
.

It is clear that the change in the deposit spread, and therefore it’s effect on monetary policy

transmission via the change in the default probability, is particularly large in the scenario

in which the D-ZLB is binding, such that R̂D =
¯
RD and hence the deposit spread changes

one-to-one with the policy rate. Formally, the following corollary can be proven:

Corollary 3. Assume a unique interior solution in R̂L exists such that Π′′(R̂L) < 0 and

the bank has a non-trivial probability of failure (ω̃ ∈ (0, 1)). Consider two different lower

bounds
¯
RD1,

¯
RD2 with

¯
RD1 >

¯
RD2 such that the lower bound constraint would be binding

under
¯
RD1 (that is R∗(

¯
RD1) > R), but not under

¯
RD2 (that is R∗(

¯
RD2) < R). Everything

15The exact impact of a change in the default probability on monetary policy transmission
depends on how the slope of the conditional expectation ∂ωLL

∂ω̄ changes with ω̄.
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else equal, a policy rate cut is more expansionary when the lower bound
¯
RD1 constraint is

binding:

∂R̂L

∂R

∣∣∣∣∣
¯
RD1,R,ω̄

− ∂R̂L

∂R

∣∣∣∣∣
¯
RD2,R,ω̄

=
∂ωLL

∂ω̄

D̄

L(RL)
[
(1− ωLL)−RL

∂ωLL

∂RL

] ϵD
ϵD − 1

> 0 (17)

While the conditioning on both the policy rate and the default cutoff in Corollary 3 is

counterfactual for policy rates R ̸= R∗ in the model, it is nevertheless useful to understand

the fundamental difference in the transmission of policy rates above and below the zero

lower bound, as shown in Figure 1.16

2.3 Intuition: D-ZLB Decreases Limit Liability Subsidy

To gain intuition about these results, marginal profits of raising the loan rate are (by

the Leibniz rule):

Π′(RL) =

∫ ω̄

0
[(RL(1− ω)−R)L′(RL) + (1− ω)L(RL)]dF (ω) (18)

16In the context of the model, keeping the default cutoff fixed can be thought of as banks receiving
an exogenous compensation ∆ = D̄

(
¯
RD1 − ϵD

ϵD−1R
)

from the government, such that:

(
¯
RD1 −R)D̄ +RL(RL)−∆

RLL(RL)
=

( ϵD
ϵD−1 − 1)RD̄ +RL(RL)

RLL(RL)

and hence ω̄ remains the same after the change in
¯
RD.
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The marginal profits can be decomposed into the marginal profits that a bank without

limited liability would obtain and a marginal limited liability subsidy, in a similar fashion

to Bahaj and Malherbe (2020):

Π′(RL) = [(RL(1− Eω)−R)L′(RL) + (1− Eω)L(RL)]

−
∫ 1

ω̄
[(RL(1− ω)−R)L′(RL) + (1− ω)L(RL)]dF (ω)︸ ︷︷ ︸

≡MS

(19)

where the second line of (19), which integrates over the default region, is the marginal

limited liability subsidy MS. It is obvious that the default cutoff (and hence the D-ZLB)

does not impact the first term, which is the marginal profit of a bank without limited

liability. But through it’s effect on the cutoff, the D-ZLB does impact the limited liability

subsidy. It is useful to look at the change in the marginal subsidy (for a given loan rate)

when the default probability decreases:

∂MS

∂ω̄

∣∣∣∣
R̂L

= [(R̂L(1− ω̄)−R)L′(R̂L) + (1− ω̄)L(R̂L)]f(ω̄) > 0 (20)

Thus, a higher default cutoff c.p. increases the marginal subsidy, since the marginal profit

of raising the loan rate at the default cut-off is positive.17 Intuitively, as in Bahaj and

Malherbe (2020), a higher default cutoff ω̄ – i.e. a lower default probability – shifts this

positive marginal profit from the deposit insurance agency to the bank’s shareholders,

thereby increasing the total marginal profit of lending for the bank’s shareholders.

As just explained, when the bank is risky and the D-ZLB binds, a stricter lower bound

c.p. increases the bank’s default probability, thus shifting marginal profits at the default

cutoff from the bank to the deposit insurance agency, and thereby decreasing marginal

17The sign of (20) follows since Π′(R̂L) implies sign(R̂LL
′(R̂L) + L(R̂L)) = sign(RL′(R̂L)).

Since L′(·) < 0 the integrand is increasing in ω. But then for the integral to evaluate to zero, the
integrand must be positive at the upper integration bound ω̄.
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Figure 2: Bank profits as a function of loan rates with and without a D-ZLB

profits of lending. But a bank that has market power in lending will raise the loan rate as

long as the marginal profits of doing so is positive. In consequence, as Figure 2 illustrates,

the optimal loan rate is lower, since marginal profits from raising the loan rate are positive

to the left of the optimal loan rate.

3 The Amplification Mechanism vis-a-vis the Equity

Erosion Channel

This section presents a quantitative, dynamic model to assess the relative importance

of the amplification channel emphasized in the previous section vis-a-vis the the equity

erosion channel of e.g. Abadi et al. (2023). In the static model of the previous section, the

equity erosion channel was mute, since banks were not subject to capital requirements. In

contrast, capital requirements and equity dynamics are now introduced, allowing the model

to quantify the relative importance of the erosion of equity due to losses on deposits.
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3.1 Quantitative Model

Set-Up. In the spirit of Mendicino et al. (forthcoming), I assume that the economy

consists of a unit continuum of islands k. On each island k there is a bank and a unit

continuum of one-period firms i. Bank k can only lend to firms on its island and therefore

has a local monopoly, but competes with all other banks in a monopolistic fashion in deposit

markets. Banks also have access to a safe asset S remunerated at the policy rate Rt, which

is common to all islands. Whenever the bank on an island fails it is immediately replaced

with a new bank, which chooses its equity level endogenously, as in Corbae and D’Erasmo

(2021).18 In continuation, all model ingredients will be described in detail.

Monetary Policy. Monetary policy is taken as exogenous, and follows a two-state

Markov chain. States will be denoted by st ∈ {P,N}. In state P , the central bank sets

positive monetary policy rates R(P ) > 1, while in state N the central bank lowers the

monetary policy rate into negative territory R(N) < 1. State N will be associated with a

recession caused by low firm productivity, as will be described below. States are modeled as

a Markov chain, with the transition probability from state i to state j given by qij . These

are estimated from EA data, as will be described in Section 3.2.

Deposit Demand. Deposit markets are identical to the stylized model of Section 2.

Deposits are perfectly insured by the government, and bank k faces monopolistic competi-

tion in deposit markets, with aggregate deposit rate RDt:

D(RDkt, RDt) =

(
RDkt

RDt

)−ϵD

D̄, ϵD < −1

18As Corbae and D’Erasmo (2021) assume for "big banks", it is assumed that there is a cost to
entering island k that is sufficiently high that no new banks enter as long as there is an incumbent
bank.
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Monopolistic competition in deposit markets is commonly assumed in quantitative models

studying the effects of the deposit zero lower bound, e.g. Abadi et al. (2023), Eggertsson

et al. (2024) and Ulate (2021). By assuming a flat deposit demand, I do not take a stance

on the debate about the deposit channel of monetary policy, that is whether bank deposits

are decreasing in the policy rate or not (Drechsler et al., 2017; Begenau and Stafford, 2023;

Repullo, 2020a).19

Firms: Production & Loan Demand. Loan demand and the loan default distri-

bution are microfounded from the problem of firms that require bank loans for production.

At time t, firms learn about their state-dependent productivity A(st), common to all

firms on all islands. The representative firm i on island k requires bank loans to acquire

production factors Kikt, which depreciate at rate δ. The firm is subject to a binary success

shock dikt ∈ {0, 1}. When it is unsuccessful, the firm loses a share λ of its production

factors and defaults on its loan. The representative firm’s revenue at time t+ 1 is then:

Yikt+1 = (1− dikt+1)[(1− δ)Kikt +A(st)K
α
ikt] + dikt+1(1− λ)Kikt λ, α ∈ [0, 1] (21)

Bank k charges a gross interest rate RLkt = 1 + rLkt for loans, and firms enjoy limited

liability. Hence, the representative firm maximizes:

max
Kikt

Pr(dikt+1 = 0)[(1− δ)Kikt +A(st)K
α
ikt −RLktKikt] (22)

19While Drechsler et al. (2017) present evidence for the US that bank deposits are decreasing in
the Fed funds rate, Begenau and Stafford (2023) challenge their identification strategy and find a
statistically weak relationship between aggregate deposits and the Fed funds rate, and an increasing
relationship between deposits and the Fed funds rate for the largest 10% of banks.
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The FOC is

(1− δ) + αA(st)K
α−1
ikt

!
= RLkt (23)

Which implies a state-dependent loan demand of firm i on island k:

Likt = Kikt =

(
RLkt − (1− δ)

αA(st)

) 1
α−1

(24)

and, by symmetry, total loan demand on island k is L(RLkt, st) =
∫ 1
0 Kiktdk =

(
RLkt−(1−δ)

αA(st)

) 1
α−1 .

State-dependent loan-demand is a quantitatively relevant feature that allows the model to

produce realistic loan-to-deposit ratios.

Loan defaults follow the Vasicek (2002) single risk factor model: there is a common

shock zkt ∼ N(0, 1) to all firms on island k and an idiosyncratic shock ϵik ∼ N(0, 1) that

realize at t:

dikt = {ς +√
ρzkt +

√
1− ρϵikt > 0} (25)

ς is a financial vulnerability parameter and pins down the unconditional default probability

of all firms. As discussed in Gordy (2003), this setup is the model underlying the Basel

capital requirements, which banks in the model are subject to. As shown in Vasicek (2002),

the cdf of the default rate ω is then given by (14).

Banks. As before, banks raise insured deposits D, invest in risky loans L and a safe

asset S that is remunerated at the policy rate.20 Different to the static illustrating model

in Section 2, banks are now subject to a capital requirement γLkt ≤ Ekt, where Ekt denotes

the equity of the representative bank k after paying out dividends and any equity injections.

This is the main difference between the quantitative and the illustrating model, as it gives

20An extension of the model that allows for additional non-deposit funding will be considered in
Section 3.6.4.
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rise to an equity erosion channel as in Abadi et al. (2023) and Ulate (2021), through which

banks are forced to reduce lending when losses on deposits are sufficiently large. Thus, the

representative bank’s balance sheet is now:

Ekt +Dkt = Lkt + Skt (26)

Every period, banks decide the amount νkt > 0 to be paid out as dividends, and how

much new equity Ikt to raise. The representative bank can raise equity at a quadratic cost

χII
2
kt, similar to Corbae and D’Erasmo (2021). Dividend payouts on the other hand are

frictionless. Hence, equity dynamics are completely endogenous here – this is different to

both Abadi et al. (2023) and Ulate (2021), where the dividend payout ratio is fixed and

exogenous.

As just discussed, a fraction ωkt of the representative bank’s loan portfolio defaults,

with a loss given default of λ. The ex-post realized return on the loan portfolio of bank k

is thus:

R̃Lkt(ωkt) = (1− ωkt)RLkt−1 + ωkt(1− λ) (27)

The bank defaults if it’s loan repayments are insufficient to repay it’s deposit obligations

in full, i.e. if:

R̃Lkt(ωkt)L(RLkt, st)−RDktD̄ +R(st)Skt < 0

In this case, the bank is closed down forever and the bank’s assets are repossessed by a

deposit insurance agency, which will be discussed further below. As mentioned above, it is

assumed that upon the default of the incumbent bank on island k, a new bank enters on

island k immediately.

I assume that banks cannot charge gross deposit rates below
¯
RD. In the baseline model,

I set
¯
RD = 1 in line with the ample empirical evidence for a zero lower bound on deposit
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rates (Eggertsson et al., 2024; Basten and Mariathasan, 2023; Hong and Kandrac, 2021).

Since the only difference between conventional monetary policy rates and negative interest

rate policy is that in the latter case the D-ZLB constraint is binding, the quantitative anal-

ysis will focus on the comparison of the baseline scenario vis-a-vis an alternative scenario

in which banks are not subject to a D-ZLB. The difference between the scenarios is infor-

mative about the effects of negative interest policy vis-a-vis conventional monetary policy,

as without the D-ZLB, a policy rate cut from positive to negative rates is like any other

cut.

Banks are managed in the interest of their shareholders, who enjoy limited liability and

discount the future at a rate β(st), a function of the risk free rate R(st). For quantitative

purposes, similar to Repullo and Suarez (2012), it is assumed that bank shareholders dis-

count the future at a rate higher than R(st): β(st) =
1

R(st)+∆E
, which reflects a constant,

exogenous excess cost of equity.21

The bank’s value function V (s, Ẽk, RD,Dk) (where time subscripts are omitted) depends

on the state s of the economy, the bank’s level of equity before dividends or equity injections

Ẽk, the aggregate deposit rate RD and a binary variable Dk ∈ {0, 1} that indicates whether

a bank has defaulted in the past (Dk = 1) or not (Dk = 0). By limited liability of

shareholders and the assumption that a bank that has defaulted remains closed forever, the

value of the bank is zero if it defaults: V (·, ·, ·, 1) = 0, and the default indicator remains 1

forever: Dk = 1 =⇒ D′
k = 1.

21∆E reflects a differential cost of equity as observed in reality. As discussed in Repullo and
Suarez (2012), such a cost might reflect costs of monitoring managers incurred by shareholders, a
discount for lack of liquidity of equity stakes and a risk-related component. I follow Repullo and
Suarez (2012) in abstracting from changes in the risk-premium component of the cost of equity due
to changes in bank’s leverage (Admati et al., 2010).
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The problem of the bank on island k that has not defaulted in the past is then:

V (s, Ẽk, RD, 0) = max
νk∈[0,Ẽk],Ik≥0,RLk,RDk,Sk≥0

νk − Ik − χII
2
k + β(s)EV (s′, Ẽ′

k, R
′
D,D′

k)

subject to γL(RLk, s) ≤ Ẽk − νk + Ik

RDk ≥
¯
RD

Ẽ′
k = [(1− ωk)RLk + ωk(1− λ)]L(RLk, s)−RDkD(RDk, RD) +R(s)Sk

D′
k = 1(Dk = 0)1(Ẽ′

k < 0) + 1(Dk = 1)

L(RLk, s) + Sk = D(RDk, RD) + Ẽk − νk + Ik

where 1(·) denotes the indicator function. This problem nests both the problem of an

incumbent bank and a newly entered bank, for which Ẽk = 0 and D = 0. The level

of equity with which a new bank enters island k upon default of the incumbent bank is

therefore determined endogenously and depends on the cost parameter χI .

As in the static model of Section 2 the representative bank sets the same deposit rate

independently of the loan rate. The deposit rate FOC is:

D(RDk, RD) + (RDk −R)
∂D(RDk, RD)

∂RDk
= λLB (28)

where the multiplier on the deposit lower bound is denoted by λLB, which will be binding

in state N since R(N) < 1 and non-binding in state P . Thus, all banks will offer the same

deposit rate, such that

RDkt = RDt =


1 if st = N

ϵD
ϵD−1Rt if st = P
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and further D(RDk, RD) = D̄. In state N , banks therefore face losses on deposits, which

makes them ceteris paribus (a) more likely to fail and (b) erodes their equity over time.

Naturally, this impacts the likelihood that a bank will be constrained by the capital re-

quirement, which is the channel emphasized by Abadi et al. (2023) in a model abstracting

from any risk. The simple model in Section 2 predicts that when banks are risky the D-ZLB

impacts the loan supply decision even for unconstrained banks. The following sections will

confirm that this conclusion still holds here.

Aggregation. Given that there is a unit continuum of islands, the aggregate loan volume

is:

Lt =

∫ 1

0
Lktdk (29)

and the aggregate loan rate is given by:

RLt =

∫ 1

0
RLktdk (30)

Deposit Insurance Agency. To allow an assessment of the cost of deposit insurance

due to the D-ZLB, I explicitly model a deposit insurance agency. This agency repossesses

the assets of a bankrupt bank and uses the proceeds as well as government funds Tt to

repay depositors. I assume that repossession of the loan portfolio is costly, such that the

DIA only receives (1 − µF ) of the loan repayments of defaulting banks. The amount of

government funds the DIA needs to repay depositors is then:

Tt =

∫ 1

0
1(ωkt < ω̃kt)

[
RDtD̄ −RtSKt − (1− µF ) ((1− ωkt)RLkt + ωkt(1− λ))L(RLkt, st)

]
dk.

(31)
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3.2 Calibration

The model is calibrated at yearly frequency. The calibration of the baseline model is

for Germany, which has a banking sector with a particularly high deposit-to-loan ratio. An

alternative calibration for the Euro Area, where the average bank had a deposit-to-loan

ratio well below one during the NIRP period, will be considered later on in a robustness

exercise in a slightly extended model that allows for the non-deposit debt funding necessary

to match such low deposit-to-loan ratios.

To calibrate the states of the economy and the transition probabilities, I use data on

the deposit facility rate and the marginal lending rate set by the ECB between Q1 1999 and

Q3 2023. Since the start of the ECB’s Quantitative Easing (QE) program in Q1 2015, the

relevant policy rate has been the deposit facility rate as the ECB has flooded the market

with reserves.22 Prior to QE the relevant policy rate was the marginal lending rate. I

then split the time series of the relevant gross policy rate in two regimes: a low monetary

policy rate regime (state N), with the relevant rate below 1% per annum, and a high

monetary policy rate regime (state P ) with the relevant rate above 1% per annum. Let

the resulting time-series be denoted Robs
t . The average policy rates in the two regimes are

R(P ) = 1.03325 (that is, 3.325% per annum) and R(N) = 0.99783 (that is, −0.217% per

annum). To estimate the transition probabilities of the Markov chain:

Pr(Rt = R(j)|Rt−1 = R(i)) = qij , i, j ∈ {N,P} (32)

I estimate the following logit model:

Pr(Robs
t = R(P )|Robs

t−1) =
exp(β0 + β1R

obs
t )

1 + exp(β0 + β1Robs
t−1)

(33)

22While the ECB has carried out asset purchases since October 2014, a significant extension of
the program was announced on 22 January 2015
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and compute the fitted probabilities. The results are: qPP = 0.93, qPN = 0.067, qNP =

0.11, qNN = 0.89.23

To calibrate the discount factors of banks, I rely on estimates of the cost of bank equity

from European Central Bank (2015) and Fernández and Mencía (2020). Given this evidence,

a value of 5% per annum appears a reasonable choice.24 I therefore set the excess cost of

bank capital to ∆E = 0.05. Further, I set the depreciation rate to δ = 0.1 and the capital

requirement to the Basel II capital charge γ = 0.08 as is standard. I follow Repullo and

Suarez (2012) in setting the loss-given-default parameter λ = 0.45. As discussed therein,

this was the value calibrated for uncollateralized corporate loans in the Internal Rating

Based Approach introduced in the Basel II framework. Next, I set ϵD = 100 to imply a

deposit spread of 1% per annum for banks in the positive monetary policy state, similar

to the calibration of Abadi et al. (2023). The flat aggregate deposit supply is normalized

to D̄ = 50, which is numerically advantageous. Next, I set the firm’s unconditional default

probability (given by Φ(ς), where Φ(·) is the cdf of the standard normal distribution) to

2.7%, based on Euro Area data reported in Mendicino et al. (forthcoming). Lastly I follow

Mendicino et al. (forthcoming) in setting the repossession cost of assets of a bankrupt bank

to 30%, i.e. µF = 0.3.

23This coincides with the Maximum Likelihood estimator for the two-state Markov chain, given
by qij =

nij

ni1+ni2
, where nij =

∑
t 1{Robs

t = R(j)}1{Robs
t−1 = R(i)}.

24European Central Bank (2015) reports a decomposition of the cost of bank equity into the real
risk free interest rate, inflation expectations and the equity risk premium based on estimates of a
dividend discount model and the CAPM for 33 European banks listed in the EURO STOXX index.
Prior to the financial crisis, the excess cost of bank equity (relative to the risk free real interest rate)
was relatively stable between 3% and 7%, with little differences in the total cost of equity between
the four largest economies (Germany, France, Italy, Spain) for which country-specific estimates are
reported. Using a similar methodology, Fernández and Mencía (2020) report similar levels of the
cost of bank equity (in excess of the risk free rate) for October 2020 (after a covid-related spike) as
in early 2007. Abstracting from market turmoils due to the financial crisis, sovereign debt crisis,
Brexit and covid between 2008 and 2020, a 5% excess cost of bank equity therefore seems reasonable
in the context of this model.
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Moment Data Model

Mean Loan Spread 2.48 2.61
Mean Bank Default 0.66 0.62
L/D (State P) 1.05 1.05
L/D (State N) 0.92 0.91
Relative Bank Size (p1/p50) < 5.0% 10.94 %

Table 1: Model Fit

Note: The loan spread is calculated as the difference of corporate lending rates as re-
ported by the Bundesbank (2003-2023, excluding 2008/2009) and the relevant policy rate;
Bank default probability from Mendicino et al. (forthcoming) for the Euro Area; Deposit-
to-Loan Ratio for Germany from ECB BIS (1999Q1-2023Q3); Relative bank size: the
median bank in Germany has a business volume of between 1-5 Billion Euro, the 1th per-
centile is between 0 and 50 Million, the relative size of the 1th percentile to the median is
therefore below 5%.

The remaining parameters α, ρ,A(N), A(P ) and χI are estimated using the Simulated

Method of Moments. To pin down α, I target a loan rate spread of 2.48% (calculated from

average loan rates in Germany to non-financial corporations published by the Bundesbank).

For the correlation between firm defaults ρ, I target the mean bank default probability of

the Euro Area as a whole (taken from Mendicino et al., forthcoming). The state-dependent

productivity of firms A(N), A(P ) is pinned down by the mean deposit-to-loan ratio in both

states (defined as above based on the policy rate), calculated from data on German banks’

balance sheets available from the ECB. Lastly, for the cost of equity injections χI I target

the relative size of the first percentile of banks to the median bank.

The estimated values are A(P ) = 0.204, A(N) = 0.1541, α = 0.95, ρ = 0.263 and

χI = 10. The data moments and model moments are summarized in Table 1.
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3.3 Quantitative Results

Through the lens of the model, the only difference between negative policy rates and

conventional monetary policy rates is the D-ZLB. Hence, the following discussion focusses

mainly on the effects of the D-ZLB.

Figures 3 - 6 depict the value functions, and policy functions of the bank (that is, loan

rates, dividends and equity injections as a function of pre-dividend equity Ẽ), alongside the

distribution of Ẽ. This is based on simulating 10000 independent islands over 100 periods.

Two main observations can be drawn from the figures regarding banks’ incentives: First,

unconstrained banks charge lower loan rates in the presence of a binding D-ZLB. This is the

amplification effect shown to arise in the simple model of Section 2. Second, when subject

to a binding D-ZLB, banks pay out less dividends for any given level Ẽ of pre-dividend

equity for which the bank would have paid out non-zero dividends in the absence of the

D-ZLB, and raises more equity for lower levels of Ẽ. This allows banks to maintain a higher

level of loan supply than they could otherwise sustain under the D-ZLB.

(a) State P (Policy Rate 3.25%) (b) State N (Policy Rate -0.22%)

Figure 3: Value Functions and Equity Distribution

These adjustments in dividend payouts and equity injections, however, do not offset

the effect of the losses in deposit taking that the bank incurs when the D-ZLB is binding
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(a) State P (Policy Rate 3.25%) (b) State N (Policy Rate -0.22%)

Figure 4: Loan Rates and Equity Distribution

(a) State P (Policy Rate 3.25%) (b) State N (Policy Rate -0.22%)

Figure 5: Dividends and Equity Distribution

on the distribution of equity, such that the probability of banks having low equity levels,

which force them to restrict lending due to a binding capital requirement, increases – in

other words, the left tail of the equity distribution is thicker when banks are subject to a

D-ZLB. This is the equity erosion channel of Abadi et al. (2023), but in contrast to their

model dividends are chosen endogenously here.25 Although the effect is more pronounced

25Abadi et al. (2023) assume a constant dividend pay-out ratio.
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(a) State P (Policy Rate 3.25%) (b) State N (Policy Rate -0.22%)

Figure 6: Equity Injections and Equity Distribution

under negative policy rates (when the D-ZLB is binding), the losses in deposit taking under

negative policy rates affect the distribution of equity in both states.

The results of simulating the model are summarized in Table 2. As the table shows,

the amplification effect is large: the loan rate charged by unconstrained banks is 10p lower

under the D-ZLB when policy rates are at -0.22%. On the other hand, the share of banks

having to restrict lending to comply with capital requirements due to equity erosion, that

is banks whose equity falls below the level needed to sustain the loan rate charged by

well capitalized banks, increases from a level of 17.33% that would have prevailed in the

absence of a D-ZLB to 39.78%. However, the amplification channel dominates, with average

aggregate loan volumes being 4% higher under negative policy rates due to the D-ZLB.26

At the same time, however, negative interest rate policy implies a substantial deteriora-

tion of financial stability in the scenario in which banks are subject to a D-ZLB, with banks

default probability increasing by 28 basis points due to the D-ZLB under negative policy

rates of -0.22%, compared to the case of perfect transmission into deposit rates – in that

case, the default probability is 0.49%, such that the D-ZLB effect on bank risk constitutes

26This is despite average loan rates being slightly higher in state N when banks are subject to
a D-ZLB, an instance of Jensen’s inequality.
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D-ZLB No D-ZLB

Policy Rate (%) 3.25 -0.2167 3.25 -0.2167

Deposit Rate (%) 2.23 0.0 2.23 -1.2
Loan Volume 52.617 45.678 53.581 43.885
Loan Rate (unconst., %) 5.83 1.98 5.84 2.08
Loan Rate (const. %) 6.37 2.45 6.36 2.48
Loan Rate (%) 5.95 2.18 5.93 2.15
Share Constrained (%) 21.9 39.78 18.92 17.33
Bankruptcy Prob. (%) 0.56 0.77 0.54 0.49
Deposit Insurance Costs 0.0907 0.1049 0.0924 0.0643

Deposit Insurance Costs (Unconditional) 0.095 0.084
Loan Volume (Unconditional) 50.514 50.643

D-ZLB Bank Risk Effect 0.02 0.28

Table 2: Average Results By State

The table reports averages over a simulation of 100 years and 10000 islands with indepen-
dent shocks zkt. Loan rate (const.) and Loan rate (unconst.) are the loan rates charged
by, respectively, banks that restrict lending due to low equity levels, and those that have
sufficient equity. Share Constrained is the share of banks that restrict lending due to low
equity levels. The D-ZLB Bank Risk Effect is the change in the bankruptcy probability
due to the deposit ZLB.

a very sizable 60% increase in bank default probabilities. Nevertheless, as Table 2 shows,

the additional deposit insurance cost due to the D-ZLB amounts to only about 2% of the

additional loan volume due to the D-ZLB in the negative interest rate state N .

While the amplification channel dominates under negative policy rates, the D-ZLB leads

to (on average) lower aggregate loan volumes in the positive interest rate state P , as the

equity erosion effect continues to affect banks even after the spell of low productivity and

negative interest rates is over and the economy is back in state P . In that state, the share of

constrained banks increases from 18.92% to 21.9% due to the D-ZLB. Hence, the increase in

the policy rate upon the increase in aggregate productivity (change from state N to state P )

decreases aggregate lending initially beyond the level prevailing before the initial policy rate

cut into negative rates (note that this does not impair, but rather augment the effectiveness
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Figure 7: Histogram Loan Supply Differences

This figure depicts the distribution of differences LDZLB
kt − LnoDZLB

kt in loan supply in the
scenario in which banks are subject to a D-ZLB and the scenario in which they are not
subject to a D-ZLB, by aggregate state. The sequence of loan default rates ωkt on a given
island k is kept constant across simulations.

of this monetary policy rate increase). These dynamics will be further assessed in the next

subsection. In consequence, across both states, aggregate loan volumes are slightly lower

in the scenario in which there is a D-ZLB – however, the ranking of average loan volumes

across states between the two scenarios is not robust, as will be discussed in Section 3.6.

To shed more light on the heterogeneity of the D-ZLB effect on the cross-section of loan

supply, Figure 7 depicts a histogram of differences in loan supply in a given island (i.e. for a

given history of loan default rates) by state. The distribution pools all periods, and hence

reflects differences in loan supply for the average period during a spell of state P and state

N , respectively. In state P, i.e. under positive policy rates, loan volumes are smaller under

the ZLB in 9% of islands and larger in 13% (and equal in the remaining 78%). In state N,

i.e. under negative policy rates, loan volumes are smaller under the ZLB in 28.6% of islands
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and larger in 71.4%. The following subsection will focus on how these differences in loan

supply change over time under negative policy rates.

3.4 Dynamics: The D-ZLB Effect Over Time

In the model, periods of negative interest rates coincide with periods of low productivity

A(s). Thus far, results were presented as averages across time for the baseline monetary

policy rate of −0.22% in the low productivity state. In the following, I investigate how

the economy reacts over time to deeper monetary policy rate cuts when productivity drops.

Specifically, I consider monetary policy rates of 0%, −0.22% (the baseline level) and −0.5%.

Figure 8 depicts impulse response functions of the economy in which banks are subject

to a D-ZLB after a change from the high productivity state P to the low productivity

state N for different levels of the monetary policy rate in the low productivity state. Pro-

ductivity drops in period 1 and follows the Markov-chain dynamics in continuation, i.e. in

every period there is an approximately 10% probability that the economy returns to the

higher productivity state P . Due to the differences in equity levels of banks, the evolution

depends both on the equity level of a given bank when the productivity shock hits, and

of the subsequent loan default rates. The figure depicts the average, and hence aggregate,

evolution.27

Panel (a) depicts impulse responses of loan volumes. While the productivity shock

(ceteris paribus) decreases lending as it shifts down the loan demand function, all monetary

policy cuts considered raise the aggregate loan volume – in other words, the monetary policy

cuts considered are expansionary.

Additionally, panel (b) depicts the difference between the IRFs of banks subject to a

D-ZLB with those of banks that are not subject to a D-ZLB. As the panel shows, all the

27Since aggregate loan supply is given by Lt =
∫ 1

0
Lktdk, the aggregte loan supply coincides with

the average loan supply.
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(a) Mean Loan IRF
(b) Difference Loans IRFs (D-ZLB - no D-

ZLB)

Figure 8: Evolution After Temporary Productivity Change From A(P ) To A(N)

This figure depicts the average evolution across islands k of selected variables after a tem-
porary change from state P to state N for varying policy rates in state N . The policy
rate in state P , as well as the sequence of loan default rates ωkt is kept constant across
simulations.

monetary policy cuts considered are initially more expansionary when banks are subject to

a D-ZLB compared to the alternative scenario when they are not, as the increase in the

loan volume is larger.

The monetary policy cut to 0% remains more expansionary on average over time when

there is a D-ZLB vis-a-vis the alternative scenario without D-ZLB. The deeper monetary

policy cuts to −0.22% and −0.5%, on the other hand, become less expansionary over time:

the equity erosion channel begins to dominate and the monetary policy cut becomes less

effective in stimulating bank lending under the D-ZLB. After how many years the effect

reverses depends on the policy rate: it is the case after 7 years for the monetary policy cut

to −0.22%, and already after 3 years for the monetary policy cut to −0.5%.

Next, I investigate the effects of monetary policy after a permanent change to the

low productivity state. The evolution of the economy after such a permanent change is

depicted in Figure 9. Two conclusions can be drawn from the figure: first, the difference in
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(a) Mean Loan IRF
(b) Difference Loans IRFs (D-ZLB - no D-

ZLB)

Figure 9: Evolution After Permanent Productivity Change From A(P ) To A(N)

This figure depicts the average evolution across islands k of selected variables after a per-
manent change from state P to state N for varying policy rates in state N . The policy
rate in state P , as well as the sequence of loan default rates ωkt is kept constant across
simulations.

loan volumes due to the D-ZLB remains positive for one additional year. This is because the

equity erosion channel still affects banks in the high productivity state P when policy rates

are positive again, while the amplification effect only affects banks in state N . Second, the

difference in loan volumes due to the D-ZLB becomes more negative for the cuts to −0.22%

and to −0.5% than for the temporary shock, as the equity erosion effect only reaches its

full strength after about 15 years for the monetary policy cut to −0.22% and even later for

the cut to −0.5%. For completeness, Tables 4 and 5 in the Appendix report the average

results by aggregate state s for the alternative monetary policy rates. The tables confirm

that banks extend on average higher loan volumes in the presence of a D-ZLB vis-a-vis

the scenario when they are not subject to a D-ZLB for policy rates of 0%, −0.22%, and

−0.5%. Hence, while negative interest rate policy is on average more expansionary than

conventional monetary policy for the negative interest rates considered, it becomes less

expansionary over time.
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3.5 Alternative Policy: Lower Capital Requirements Instead

of Negative Interest Rates

As seen in the previous section, negative interest rates stimulate the economy at the

expense of an increase in bank riskiness. A similar qualitative effect can be expected from

a decrease in capital requirements in state N , i.e. in response to the negative productivity

shock. In reality, such a decrease could for example be achieved by a release of countercycli-

cal capital buffers. Can such a decrease in capital requirements achieve a similar stimulation

of the economy, at a lower increase in bank riskiness? To check this, I set the policy rate in

state N to R(N) = 1 (i.e. a 0% per annum net policy rate) and decrease capital require-

ments in state N to (a) γ(N) = 0.07, (b) γ(N) = 0.06 and (c) γ(N) = 0.0533. The results

are presented in Table 3. None of the decreases in the capital requirement achieves a similar

level of stimulation as the baseline negative policy rate of −0.22%. At the same time, the

bank default probability increases beyond the baseline level when capital requirements are

lowered, despite banks not facing losses in deposit taking due to the higher policy rate of

0%. Therefore, negative interest rate policy appears the better choice here overall.

Policy Rate (%) -0.22 0.0 0.0 0.0
Capital Requirement (%) 8.0 7.0 6.0 5.33

Loan Volume (P) 52.617 51.238 50.948 50.73
Loan Volume (N) 45.678 35.585 38.684 41.196
Bankruptcy Prob. (%, P) 0.558 0.548 0.569 0.589
Bankruptcy Prob. (%, N) 0.772 0.952 1.332 1.68
Deposit Insurance Costs (P) 0.091 0.085 0.084 0.084
Deposit Insurance Costs (N) 0.105 0.11 0.172 0.235

Table 3: Release of Capital Requirements
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3.6 Robustness

This subsection presents results from various variations of the model as robustness

exercises. Each variation of the baseline model is independent from the others.

3.6.1 Higher Excess Cost of Bank Capital

I first test the sensitivity of the results to the choice of the excess cost of bank capital ∆E ,

for which the available empirical evidence points to a relatively large time-series variance

(European Central Bank, 2015). In the baseline calibration, I set ∆E = 0.05. Instead,

I now set an 8% p.a. excess cost of bank capital, i.e. ∆E = 0.08. All other parameters

are kept fixed. The results are reported in Table 7. Expectedly, the higher excess cost of

capital leads to larger loan rate spreads in both states. The size of the D-ZLB effect on

the loan rates is stronger than in the baseline calibration. The loan rate of unconstrained

banks is 15bp lower due to the D-ZLB under negative interest rates, compared to 10bp

in the baseline calibration. The effect on the average default probability under negative

policy rates is also larger now in relative terms, approximately doubling from 0.37 to 0.76%.

Different to the baseline calibration, aggregate loan supply is higher in the D-ZLB scenario

in both states.

3.6.2 Varying Loan Default Probabilities

I next assess the role of varying loan default probabilities. In the baseline model, loan

default probabilities are constant. However, loan default probabilities typically vary over the

business cycle, and can be much higher in recessions (e.g. Mendicino et al., forthcoming).

To gauge the importance of this for the size of D-ZLB effects, I now assume that the

unconditional firm default probability p(st) is a function of the state of the economy, and

set p(N) = 0.0485 and p(P ) = 0.0234. These values correspond to the average firm default
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probability in the Euro Area when the firm default probability is above and below the 90th

percentile respectively, as reported in Mendicino et al., (forthcoming). All other parameters

are kept fixed. The results are reported in Table 8. The table suggests that the higher

average loan default rate in state N significantly strengthens the impact of the D-ZLB on

the unconstrained loan rate. In the negative interest rate state, the unconstrained loan rate

is 3.42% in absence of a D-ZLB, compared to 2.72% when banks are subject to a D-ZLB.

At the same time, the D-ZLB effect on the bank default probability is much stronger: the

bank default probability increases by more than 1pp in state N . Nevertheless, aggregate

loan supply is higher in the D-ZLB scenario in both states.

This exercise illustrates that a change in the distribution of loan default rates (within

the observed range of average loan default rates in the Euro Area) has a quantitatively

important impact on the size of the D-ZLB effect.

3.6.3 Loan Default Probabilities as a Function of the Loan Rate

Up to now, loan default probabilities were assumed to be independent of loan default

rates. In reality, loan rates affect loan default probabilities through at least three channels:

(i) adverse selection (Stiglitz and Weiss, 1981), (ii) borrower moral hazard, with borrowers

optimally increasing their own default risk when facing higher loan rates (Stiglitz and Weiss,

1981; Boyd and De Nicolo, 2005), and (iii) general equilibrium feedback effects through

prices (Kiyotaki and Moore, 1997; Bernanke et al., 1999; Brunnermeier and Sannikov, 2014).

Banks internalize the impact of loan rates on the loan default probabilities, hence their

optimal loan rates will be affected by such a feedback loop. To gauge the impact on the

effects of the D-ZLB, I now assume that the individual borrowing firm’s unconditional

default probability is given by pt = max(a+ b(RLt − 1), 1), following Martinez-Miera and

Repullo (2010). The strength of the feedback between loan rates and the unconditional

loan default probability is thus governed by b.
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I set a = 0.02 and b = 0.15, such that the unconditional default probability is somewhat

above (below) the baseline value of 0.027 in state P (N). The results are presented in Table

9. Additionally, the histogram of loan volume differences due to the D-ZLB is depicted in

Figure 10.

In state N , i.e. under negative interest rates, the unconstrained loan rate is lower com-

pared to the baseline in both scenarios (D-ZLB and no D-ZLB), reflecting the now decreased

loan default probability in that state. The effect of the D-ZLB on the unconstrained loan

rate is also lower than in the baseline (approximately 4bp), and the average loan volume

only increases by around 1% in state N . Nevertheless, aggregate loan supply is higher in

the D-ZLB scenario in both states.

The effect of the D-ZLB on the bank default probability is also weaker than in the

baseline model. In state N , it increases by 7bp due to the D-ZLB, up from a level of 31bp.

Thus, as in the baseline model, the amplification channel still dominates over the equity

erosion channel, but the D-ZLB increases bank riskiness. However, the feedback channel

between loan rates and loan default rates weakens the effects.

3.6.4 Low Deposit Banks

In the baseline calibration used for the main quantitative results above, banks have

abundant deposits and choose to invest a part of them at the policy rate in order to exploit

market power in loan markets. While this is appropriate for the average German bank (see

Table 1), it is less appropriate for the average Euro Area bank. As Table 6 shows, the

average loan-to-deposit was well above 1 for Euro Area banks during the spell of negative

interest rate policy conducted by the ECB. In the context of the model here, such banks

would thus borrow at the policy rate (Skt < 0). However, in reality, banks with a default

probability above zero would not be able to borrow at the riskless rate R(st). In fact, the

interest rates at which commercial banks can borrow from the ECB were never negative,
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and accessing the facility requires posting collateral.28 In unsecured transactions on the

interbank market, on the other hand, borrowing banks with a non-zero default probability

would have to compensate lenders for default risk by paying a higher interest rate (e.g.

Afonso et al., 2011).

Therefore, I now assume that banks can borrow funds S− on financial markets, such

that the balance sheet of bank k is now: Lkt + Skt = Dkt + S−
kt + Ekt. The interest rate

that lenders charge on non-deposit financing S−
kt is denoted R̃kt. I further assume that this

debt is junior to deposits, such that the funds available to repay non-deposit lenders are

given by:29

Ωkt = max(((1− ωk)RLkt + ωk(1− λ))Lkt −RDtDkt, 0).

Hence, the expected return for lenders that provide non-deposit debt to bank k is:

RS
kt = R̃kt −

∫ 1
0 min{R̃ktS

−
kt − Ωkt, R̃ktS

−
kt}dF (ω)

S−
kt

(34)

I assume that lenders are risk-neutral, and may alternatively invest in the safe asset at rate

R. Lenders are thus willing to lend S−
kt to bank k if they break even in expectation:

RS
kt = Rt (35)

This subsection considers an alternative calibration to approximately match the average

loan-to-deposit ratios of Euro Area banks. To this end, the deposit base is reduced to

28The ECB sets two key interest rates at which banks can borrow from the ECB against collateral:
the main refinancing operation and marginal lending facility.

29This is in line with EU regulation. Article 108 of the EU Bank Recovery and Resolution
Directive 2014/59/EU grants eligible deposits of natural persons and micro, small and medium-
sized enterprises priority over claims of unsecured creditors. Eligible deposits, as defined in Article
2, No (95) of the directive, are all deposits not listed in Article 5 of the Directive 2014/49/EU, which
provides exclusions for deposits associated with e.g. money laundering. Thus, for the purposes of
this model, all deposits are assumed eligible.
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D̄ = 35, A(P ) is set to 0.2045 and A(N) is set to 0.154, ρ is set to 0.258 and χI = 75.

The remaining parameters are unchanged. The corresponding model and data moments

are summarized in Table 6.

The results are summarized in Table 10. A histogram of differences in lending between

banks subject to a D-ZLB and those not subject to a D-ZLB is depicted in Figure 11. The

amplification effect is of a similar magnitude as in the baseline model: the unconstrained

loan rate is 11bp lower in the presence of a D-ZLB in the negative monetary policy state.

Once again, the amplification channel dominates over the equity erosion channel in the

quantitative results, with the average loan volume being 4.4% higher in the presence of a

D-ZLB in state N . Average aggregate loan volumes are higher in both states. The effect

on the default probability is also similar to baseline, with an increase of 26 basis points due

to the D-ZLB under negative policy rates (corresponding to a 53% increase).

4 Discussion

The results from the quantitative model presented above highlight two novel results:

first, monetary policy is on average more expansionary in negative territory in the presence

of a D-ZLB, at least initially. Second, NIRP entails substantial risks for financial stability,

due to sizable increases in bank default probabilities in the presence of a D-ZLB. Both

results are two sides of the same medal, and arise because sufficiently capitalized banks

charge lower loan rates on risky loans via a novel amplification channel established in the

stylized model of Section 2, that is operative when banks have some probability of default.

To the best of my knowledge, none of the papers assessing NIRP (e.g. Abadi et al., 2023;

Ulate, 2021; Darracq Paries et al., 2023; Eggertsson et al., 2024) has considered risky banks,

precluding this channel from operating in these papers, and precluding them from assessing

financial stability risks.
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Relation to the Empirical Literature. The novel amplification channel allows

the model to rationalize several observations made in the empirical literature on the effect

of negative interest rate policy.

First, it offers an explanation of the finding of some authors (e.g. Demiralp et al.,

2021; Hong and Kandrac, 2021; Bottero et al., 2022; Schelling and Towbin, 2022) of more

exposed banks increasing their loan supply relative to less exposed banks under negative

interest rates. This could potentially be explained by models abstracting from bank risk

such as Ulate (2021), Abadi et al. (2023) or Eggertsson et al. (2024) if either the loan

demand elasticity or the asset composition of such more exposed banks – the measures

used in different studies where discussed in Footnote 2 – systematically differed vis-a-vis

less exposed banks. Through the lens of the model in Abadi et al. (2023) for example, if

more exposed banks had a larger share of fixed-rate long-term assets (which increase in real

value after policy rate cuts) in their balance sheet compared to low deposit banks, their

(market valued) equity would be predicted to increase relatively more after a policy rate cut

due to the revaluation of the bond portfolio, allowing such banks to at least initially sustain

a higher loan supply level.30 But then the market value of such more exposed banks’ should

also increase more vis-a-vis low deposit banks upon policy rate cuts in positive territory.

Thus, if this was driving the empirical findings, placebo exercises such as those for stock

price changes upon monetary policy cuts in positive territory reported in Hong and Kandrac

(2021) (Appendix C therein) should fail, as stock price changes reflect changes in the market

value of equity.31 But their placebo exercises confirm abnormal reactions of stock prices of

high deposit banks (a common measure of exposure to negative policy rates in the literature)

30As stressed by Abadi et al. (2023), erosion of equity due to losses on deposits takes time,
whereas bond revaluation effects are immediate, hence decreases in loan supply due to the equity
erosion channel take time to arise.

31Changes in the number of shares and dividend payouts are not a concern since Hong and
Kandrac (2021) consider 40 minute windows around the announcement of policy rate cuts.
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vis-a-vis low deposit banks upon policy cuts into negative rate, with a much smaller and

generally statistically insignificant predicted impact of the share of wholesale deposits on

stock price changes after policy rate cuts above zero.

Second, the portfolio rebalancing effect towards riskier assets documented in e.g. Heider

et al. (2019), Bottero et al. (2022) and Basten and Mariathasan (2023) can also be explained

by the model presented here. To this end, S may be interpreted as safe lending. Since the

aggregate deposit base D̄ is constant, a decrease in the loan rate under a D-ZLB means

that the share of risky loans in the banks’ portfolio rises. Heider et al. (2019) argue that

their finding is likely due to a risk-taking effect working through franchise values (as in

Repullo, 2004) – the model presented here offers a different and potentially complementary

explanation for this pattern.

Further, Demiralp et al. (2021) argue that their results of higher loan supply of banks

more exposed to negative interest rates reflect such a portfolio-rebalancing effect. The

model presented here confirms the intuition that both are related, but stresses that both

effects can be two sides of the same medal and allows to understand the relationship better:

in the model, the reason for the increased loan supply is not that banks want to reduce

their exposure to the safe asset yielding negative interest rates – if this were the case, the

same effect would arise with safe banks, but with safe banks there is separation between

loan and deposit rates and no special effects of NIRP arise. Rather, as has been seen, loan

supply increases because of the impact that the higher bank default risk due to the D-ZLB

has on the marginal limited liability subsidy, which induces lower loan rates and hence an

increased investment in risky lending vis-a-vis investment in the safe asset – a portfolio

rebalancing effect.

The amplification channel identified in this paper explains these patterns (increase in

bank lending of more exposed banks and portfolio-reallocation) in a way that is consistent

with an increase in bank riskiness due to negative policy rates, as documented in various
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empirical studies (Nucera et al., 2017; Hong and Kandrac, 2021; Basten and Mariathasan,

2023; Schelling and Towbin, 2022; Heider et al., 2019) – in fact, the increase in bank riskiness

due to losses in deposit taking due to the D-ZLB is what gives banks an incentive to increase

lending in the first place.

At the same time, the existence of the amplification channel identified in this paper

is not inconsistent with empirical studies documenting a decrease in bank lending under

negative policy rates (Basten and Mariathasan, 2023; Eggertsson et al., 2024; Heider et al.,

2019). As discussed in the introduction, through the lens of the model such effects could

reflect (a) portfolio reallocation away from the particular type of loans studied in a given

empirical contribution (e.g. away from syndicated loans in Heider et al., 2019 or away from

household lending in Eggertsson et al., 2024), or (b) a sufficiently large fraction of banks

constrained by their capital requirement.32

Policy Implications. Despite the on average higher loan supply under negative interest

rate policy due to the D-ZLB in the quantitative results – reflecting the dominance of

the amplification channel – these also suggest substantial heterogeneity between banks.

Some banks are forced to restrict lending in the presence of a D-ZLB to fulfill the capital

requirement due to losses from deposits eroding equity, as argued by Abadi et al. (2023).

For this reason, monetary policy may become less expansionary on average over time, as

in Ulate (2021). In the simulations of the model calibrated for Germany presented above,

this happens for monetary policy rates of −0.22% (the baseline calibration) if rates are

32While Heider et al. (2019) conduct a suggestive robustness exercise with the whole loan port-
folio of Euro Area observed at yearly frequency, the data quality does not permit them a regression
analysis. Demiralp et al. (2021) on the other hand, using data on the whole loan portfolio of Euro
Area banks, find that banks in the Euro Area more exposed to negative policy rates increased
lending vis-a-vis their peers. The country-level results using credit registry data from Bottero et al.
(2022) for Italy and Grandi and Guille (2023) for France support the result in Demiralp et al.
(2021). These divergent findings suggest that a portfolio-reallocation explanation of the findings in
Heider et al. (2019), consistent with the channel identified in this paper, is plausible.
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kept negative for about 9 years, and for policy rates of −0.5% after already 4 years. The

simulations thus suggest that the ECB’s spell of negative interest rates between 2014 and

2022 with a trough of -0.5% that was kept between 2019 and 20222 likely amplified lending

(on average) for German banks beyond the effect that a conventional monetary policy

cut would have had. While the simulations predict that over longer time horizons the

equity erosion effect emphasized by e.g. Abadi et al. (2023) becomes stronger such that the

additional stimulatory effect of negative interest rate policy fades off and loan volumes fall

below the level that would be expected for a conventional monetary policy rate cut, the

results suggest that the cuts into negative policy rates still remain expansionary, with a

throughout higher aggregate loan supply under a negative policy rate after a cut to both

−0.22% and to −0.5% even after 50 years of such negative policy rates.

5 Conclusion

This paper has studied the effects of negative monetary policy rates on banks in the

presence of a zero lower bound on deposit rates (D-ZLB). Banks’ hesitance to set negative

deposit rates has been a salient finding of empirical studies of the introduction of negative

policy rates in various advanced economies since the mid 2010s. This paper highlights for the

first time that this lack of transmission into deposit rates changes the loan supply decision

of banks not constrained by capital requirements when banks are risky. This is because in

that case, equilibrium loan rates are affected by banks’ default probability, which in turn is

affected by deposit rates. I show in a simple model that such unconstrained banks charge

lower loan rates on risky loans: an amplification effect of negative interest rates. However,

this comes at a cost of financial stability, with bank default probabilities increasing due

to the losses from deposits. It is important to note that this novel amplification effect for

unconstrained banks is not in contradiction with the reversal result of Abadi et al. (2023),
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which is due to banks being constrained by capital requirements. The novel mechanism

can however explain empirical findings of banks more exposed to negative interest rates

increasing their credit supply compared to less exposed banks (e.g. Hong and Kandrac,

2021; Demiralp et al., 2021; Bottero et al., 2022).

After establishing these result formally in a stylized model, the paper proceeds to quan-

tify the relative importance of the various effects of negative monetary policy rates, namely

the amplification effect for unconstrained banks, the financial stability effect and the effect

on binding capital requirements highlighted by previous contributions (Ulate, 2021; Abadi

et al., 2023), in a quantitative model of the banking industry. The model is designed to

quantify the effects of a lower bound on deposits on loan supply and financial stability –

noting that in the absence of such a D-ZLB, there is no difference between conventional

and negative interest rate policy in the model.

In the quantitative model, calibrated for Germany, the amplification effect is large and

dominates the other effects, such that loan volumes are on average about 4% higher under

negative interest rates in the presence of a D-ZLB. At the same time, negative interest rate

policy implies a substantial deterioration of financial stability under a D-ZLB, with bank

default probabilities increasing by 28 basis points under negative policy rates of -0.22% –

constituting a very sizable 60% increase.
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Appendices

A Additional Tables and Figures

D-ZLB No D-ZLB

Policy Rate (%) 3.25 -0.0 3.25 -0.0

Deposit Rate (%) 2.23 0.0 2.23 -0.99

Loan Volume 50.171 32.832 52.066 28.743

Loan Rate (unconst., %) 5.84 2.22 5.84 2.35

Loan Rate (const. %) 6.74 2.89 6.36 2.78

Loan Rate (%) 6.0 2.35 5.95 2.4

Share Constrained (%) 18.45 19.91 23.16 11.19

Bankruptcy Prob. (%) 0.32 0.37 0.52 0.4

Deposit Insurance Costs 0.0528 0.0378 0.086 0.0342

Deposit Insurance Costs (Unconditional) 0.048 0.07

Loan Volume (Unconditional) 44.917 44.999

D-ZLB Bank Risk Effect -0.2 -0.04

Table 4: Average Results By State (R(N) = 0)

The table reports averages over a simulation of 100 years and 10000 islands with indepen-
dent shocks zkt. Loan rate (const.) and Loan rate (unconst.) are the loan rates charged
by, respectively, banks that restrict lending due to low equity levels, and those that have
sufficient equity. Share Constrained is the share of banks that restrict lending due to low
equity levels. The D-ZLB Bank Risk Effect is the change in the bankruptcy probability
due to the deposit ZLB.
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D-ZLB No D-ZLB

Policy Rate (%) 3.25 -0.5 3.25 -0.5

Deposit Rate (%) 2.23 0.0 2.23 -1.49

Loan Volume 56.461 72.651 51.995 71.238

Loan Rate (unconst., %) 5.77 1.66 5.84 1.73

Loan Rate (const. %) 6.34 2.13 6.72 2.37

Loan Rate (%) 5.9 1.93 5.96 1.89

Share Constrained (%) 20.76 58.56 13.09 24.65

Bankruptcy Prob. (%) 0.58 1.17 0.39 0.31

Deposit Insurance Costs 0.098 0.172 0.0665 0.0737

Deposit Insurance Costs (Unconditional) 0.12 0.069

Loan Volume (Unconditional) 61.367 57.826

D-ZLB Bank Risk Effect 0.19 0.86

Table 5: Average Results By State (R(N) = −0.005)

The table reports averages over a simulation of 100 years and 10000 islands with indepen-
dent shocks zkt. Loan rate (const.) and Loan rate (unconst.) are the loan rates charged
by, respectively, banks that restrict lending due to low equity levels, and those that have
sufficient equity. Share Constrained is the share of banks that restrict lending due to low
equity levels. The D-ZLB Bank Risk Effect is the change in the bankruptcy probability
due to the deposit ZLB.
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Moment Data Model

Mean Loan Spread 2.55 2.55

Mean Bank Default 0.66 0.7

L/D (State P) 1.3 1.31

L/D (State N) 1.1 1.12

Relative Bank Size 2.0 5.89

Table 6: Moments & Targets (Low Deposit Model)

Note: The loan spread is calculated as the difference of corporate lending rates as re-
ported by the ECB (2003-2023, excluding 2008/2009) and the relevant policy rate; Bank
default probability from Mendicino et al. (forthcoming) for the Euro Area; Deposit-to-
Loan Ratio for the Euro Area from ECB BIS (1999Q1-2023Q3); Relative bank size for
Germany, due to lack of EA data: the median bank in Germany has a business volume of
between 1-5 Billion Euro, the 1th percentile is between 0 and 50 Million, the relative size
of the 1th percentile to the median is therefore below 5%.
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Figure 10: Histogram Loan Supply Differences when Loan Default Probabilities are a
Function of the Loan Rate (Section 3.6.3))

This figure depicts the distribution of differences LDZLB
kt − LnoDZLB

kt in loan supply in the
scenario in which banks are subject to a D-ZLB and the scenario in which they are not
subject to a D-ZLB, by aggregate state. The sequence of loan default rates ωkt on a given
island k is kept constant across simulations.
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Figure 11: Histogram Loan Supply Differences (Low Deposit Model of Section 3.6.4)

This figure depicts the distribution of differences LDZLB
kt − LnoDZLB

kt in loan supply in the
scenario in which banks are subject to a D-ZLB and the scenario in which they are not
subject to a D-ZLB, by aggregate state. The sequence of loan default rates ωkt on a given
island k is kept constant across simulations.
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D-ZLB No D-ZLB

Policy Rate (%) 3.25 -0.2167 3.25 -0.2167

Deposit Rate (%) 2.23 0.0 2.23 -1.2

Loan Volume 38.927 31.367 39.474 27.565

Loan Rate (unconst., %) 6.09 2.22 6.09 2.37

Loan Rate (const. %) 6.52 2.7 6.9 2.73

Loan Rate (%) 6.17 2.4 6.22 2.4

Share Constrained (%) 16.73 35.79 14.49 9.29

Bankruptcy Prob. (%) 0.48 0.76 0.45 0.37

Deposit Insurance Costs 0.0557 0.0708 0.0567 0.0308

Deposit Insurance Costs (Unconditional) 0.06 0.049

Loan Volume (Unconditional) 36.636 35.865

D-ZLB Bank Risk Effect 0.02 0.39

Table 7: Average Results By State (8% Excess Cost of Bank Capital))

The table reports averages over a simulation of 100 years and 10000 islands with indepen-
dent shocks zkt. Loan rate (const.) and Loan rate (unconst.) are the loan rates charged
by, respectively, banks that restrict lending due to low equity levels, and those that have
sufficient equity. Share Constrained is the share of banks that restrict lending due to low
equity levels. The D-ZLB Bank Risk Effect is the change in the bankruptcy probability
due to the deposit ZLB.
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D-ZLB No D-ZLB

Policy Rate (%) 3.25 -0.2167 3.25 -0.2167

Deposit Rate (%) 2.23 0.0 2.23 -1.2

Loan Volume 62.444 14.208 61.369 6.255

Loan Rate (unconst., %) 5.63 2.72 5.63 3.34

Loan Rate (const. %) 6.15 3.27 6.16 3.74

Loan Rate (%) 5.85 2.86 5.87 3.35

Share Constrained (%) 35.4 29.14 37.24 1.29

Bankruptcy Prob. (%) 0.48 1.45 0.38 0.2

Deposit Insurance Costs 0.0815 0.0534 0.0795 0.0031

Deposit Insurance Costs (Unconditional) 0.073 0.056

Loan Volume (Unconditional) 47.827 44.668

D-ZLB Bank Risk Effect 0.1 1.26

Table 8: Average Results By State (Varying Firm Default Probability p, Section 3.6.2)

The table reports averages over a simulation of 100 years and 10000 islands with indepen-
dent shocks zkt. Loan rate (const.) and Loan rate (unconst.) are the loan rates charged
by, respectively, banks that restrict lending due to low equity levels, and those that have
sufficient equity. Share Constrained is the share of banks that restrict lending due to low
equity levels. The D-ZLB Bank Risk Effect is the change in the bankruptcy probability
due to the deposit ZLB.
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D-ZLB No D-ZLB

Policy Rate (%) 3.25 -0.2167 3.25 -0.2167

Deposit Rate (%) 2.23 0.0 2.23 -1.2

Loan Volume 54.39 74.08 53.37 73.17

Loan Rate (unconst., %) 5.82 1.72 5.84 1.76

Loan Rate (const. %) 8.96 2.23 9.53 2.18

Loan Rate (%) 7.15 1.83 7.23 1.83

Share Constrained (%) 16.1 47.06 14.55 25.99

Bankruptcy Prob. (%) 0.48 0.38 0.49 0.31

Deposit Insurance Costs 0.08 0.08 0.08 0.07

Deposit Insurance Costs (Unconditional) 0.08 0.08

Loan Volume (Unconditional) 60.35 59.37

D-ZLB Bank Risk Effect -0.01 0.07

Table 9: Average Results By State when Loan Default Probabilities are a Function of
the Loan Rate (Section 3.6.3)

The table reports averages over a simulation of 100 years and 10000 islands with indepen-
dent shocks zkt. Loan rate (const.) and Loan rate (unconst.) are the loan rates charged
by, respectively, banks that restrict lending due to low equity levels, and those that have
sufficient equity. Share Constrained is the share of banks that restrict lending due to low
equity levels. The D-ZLB Bank Risk Effect is the change in the bankruptcy probability
due to the deposit ZLB.
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D-ZLB No D-ZLB

Policy Rate (%) 3.25 -0.2167 3.25 -0.2167

Deposit Rate (%) 2.23 0.0 2.23 -1.2

Loan Volume 45.91 39.19 44.23 37.54

Loan Rate (unconst.) 5.82 1.95 5.88 2.06

Loan Rate (const.) 6.39 2.47 6.37 2.39

Loan Rate 5.98 2.18 5.98 2.13

Share Constrained 26.09 41.81 20.06 20.36

Bankruptcy Prob. (Percent) 0.63 0.78 0.6 0.52

Deposit Insurance Costs 0.0979 0.0941 0.0918 0.0637

Deposit Insurance Costs (Unconditional) 0.0959 0.0771

Loan Volume (Unconditional) 42.38 40.72

D-ZLB Bank Risk Effect 0.03 0.26

Table 10: Average Results By State (Low Deposit Model of Section 3.6.4)

The table reports averages over a simulation of 100 years and 10000 islands with indepen-
dent shocks zkt. Loan rate (const.) and Loan rate (unconst.) are the loan rates charged
by, respectively, banks that restrict lending due to low equity levels, and those that have
sufficient equity. Share Constrained is the share of banks that restrict lending due to low
equity levels. The D-ZLB Bank Risk Effect is the change in the bankruptcy probability
due to the deposit ZLB.

B Proofs

Proof of Lemma 1. The objective function of the bank was given by:

max
RL,RD≥

¯
RD

∫ 1

0
max{(RL −R)L(RL) + (R−RD)D(RD)− ωRLL(RL), 0}dF (ω) (B.1)
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To replace the max(·) function within the interval, note that the bank will default (and

thus receive zero) if ω > ω̃, where

ω̃(RL, R̂D(R,
¯
RD), R,

¯
RD) =

(RL −R)L(RL) + (R− R̂D)D̄

RLL(RL)

Given the support of ω ∈ [0, 1], the upper bound of integration is:

ω̄ =


0 if ω̃ < 0

ω̃ if 0 ≤ ω̃ ≤ 1

1 if ω̃ > 1

(B.2)

The objective of the bank as a function of RD for any given RL can then be written as:

L(RD) =

∫ ω̄

0
[(RL(1− ω)−R)L(RL)− (RD −R)D(RD)]dF (ω) (B.3)

If ω̃ ∈ [0, 1], the integrand evaluated at the upper bound is zero by definition of ω̄. If, on

the other hand, ω̃ > 1 or ω̃ < 0, the upper bound is unaffected by marginal changes in the

deposit rate. Thus, it follows from Leibniz Rule:

L′(RD) = F (ω̄)
[
−D(RD)− (RD −R)D′(RD)

]
(B.4)

where D′(RD) = (−ϵD)
D(RD)
RD

with ϵD < −1, such that:

L′(RD) = F (ω̄)(−ϵD)
D(RD)

RD

[
R− ϵD − 1

ϵD
RD

]
(B.5)
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We have (−ϵD)D(RD)
RD

> 0 for any RD > 0. Further, if the bank does not always fail we have

F (ω̄) > 0, in which case:

L′(R∗
D)

!
= 0 ⇐⇒ R∗

D =
ϵD

ϵD − 1
R (B.6)

Then any RD > R∗
D would feature L′ < 0 since ϵD < −1. Conversely, any RD < R∗

D

would feature L′ > 0, implying that the bank could reach higher profits by decreasing or

increasing, respectively, RD. So R∗
D is the unique maximizer of (B.3). Now, if R∗

D ≤
¯
RD,

then R∗
D is also the banks’ optimal deposit rate in the presence of the D-ZLB. However, if

R∗
D <

¯
RD, then the bank maximizes (B.1) at the corner

¯
RD, since L′ < 0 for any RD > R∗

D,

such that setting a deposit rate higher than
¯
RD leads to lower profits, and the bank cannot

set a deposit rate lower than
¯
RD. Thus in general:

R̂D = max(R∗
D, ¯

RD) (B.7)

Further, R∗
D(R) is a differentiable and increasing function with:

∂R∗
D(R)

∂R
=

ϵD
ϵD − 1

> 0 (B.8)

and for any given
¯
RD, there exists R∗ = ϵD−1

ϵD ¯
RD s.t. R∗

D(R) >
¯
RD for all R > R∗ and

R∗
D(R) <

¯
RD for all R < R∗.

Proof of Proposition 1. First consider the possible corner solutions. It is never op-

timal for the bank to set loan rates lower than R: by definition Π(R) ≥ Π(RL) for all

RL < R, since for all such RL, profits from lending [(1 − ω)RL − R)]L(RL) are nega-

tive for all ω. If the bank does not make losses in deposit taking (R − R̂D)D(R̂D) ≥ 0,

the inequality is strict: Π(R) > Π(RL). Now consider the other corner, i.e. an infinite

loan rate. When setting an infinite loan rate (and thus extending zero loans), loan de-
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mand implies limRL→∞RLL(RL) = limRL→∞R−ϵL+1
L = 0 since ϵL > 1. But then clearly

limRL→∞Π(RL) = max((R− R̂D)D(R̂D), 0).

Now focus on the case in which the bank does not make losses in deposits, i.e. (R −

R̂D)D(R̂D) ≥ 0. To shorten notation, define π(ω;RL) = (RL(1 − ω) − R)L(RL) + (R −

R̂D)D(R̂D), such that Π(RL) = Eπ(ω;RL). Since max(x, 0) is convex, Jensen’s inequality

implies that Emax(π(ω;RL), 0) ≥ max(Eπ(ω;RL), 0). But then by definition:

Emax(π(ω;RL), 0) ≥ max(L(RL)

∫ 1

0
(RL(1− ω)−R)dF (ω) + (R− R̂D)D(R̂D)︸ ︷︷ ︸

≥0

, 0)

Hence, Emax(π(ω;RL), 0) = Π(RL) > (R− R̂D)D(R̂D) for all RL > R
1−Eω s.t. L(RL) > 0.

Since Eω ̸= 1, the set [ R
1−Eω ,∞) is not empty. Further, we had that limRL→∞Π(RL) =

max((R− R̂D)D(R̂D), 0) = (R− R̂D)D(R̂D) > Π(R). This guarantees that there is a loan

rate RL ∈ (R,∞) that gives a higher payoff to the bank than setting an infinite loan rate

and hence extending zero loans, and also a higher payoff than setting RL ≤ R.

Next, consider the case (R − R̂D)D(R̂D) < 0. Obviously, if the bank never breaks even

for any loan rate, i.e. (RL − R)L(RL) + (R − R̂D)D(R̂D) ≤ 0 for all RL, then Π(RL) = 0

for all RL. If that is not the case, i.e. if there exists a loan rate RL s.t. (RL −R)L(RL) +

(R − R̂D)D(R̂D) > 0, then maxRL
Π(RL) > 0 since ω has full support on [0, 1]. But since

(R − R̂D)D(R̂D) < 0, we have that limRL→∞Π(RL) = max((R − R̂D)D(R̂D), 0) = 0.

Hence, unless the bank fails with certainty for any loan rate, there is a loan rate RL ∈ R

that gives a strictly positive payoff, and hence there must be an interior maximum.

Having established the conditions for existence of an interior solution, let us now turn

to necessary conditions. Since Π(RL) is a differentiable function, it must be that at the

interior maximum Π′(RL) = 0. It was assumed that loan demand is given by

L(RL) = AR−ϵL
L , ϵL > 1
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Such that
RLL

′(RL)

L(RL)
= −ϵL (B.9)

The FOC of the maximization problem is:

Π′(RL) =

∫ ω̃

0
[((1− ω)RL −R)L′(RL) + (1− ω)L(RL)]dF (ω)

!
= 0 (B.10)

Define

ωLL =

∫ ω̃

0

ω

F (ω̃)
dF (ω)

such that the FOC becomes:

F (ω̃)[((1− ωLL)RL −R)L′(RL) + (1− ωLL)L(RL)] = 0 (B.11)

Factoring out L′(RL) and using (B.9) the FOC can be written as:

F (ω̃)L′(RL)[((1− ωLL)

(
ϵL − 1

ϵL

)
RL −R] = 0 (B.12)

and the optimal loan rate R̂L thus fulfills:

(1− ωLL)R̂L =
ϵL

ϵL − 1
R > R (B.13)

Proof of Proposition 2.

The optimal loan rate R̂L is characterized by Eq. (B.12). The equation defines R̂L as

an implicit function of R and
¯
RD:

Ξ(R̂L(R,
¯
RD), R̂D(R,

¯
RD), R,

¯
RD) = (1− ωLL)

(
ϵL − 1

ϵL

)
R̂L −R = 0 (B.14)
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Let Ξi denote the derivative of Ξ with respect to it’s i’th argument. Differentiating Ξ with

respect to
¯
RD yields:

Ξ1
∂R̂L

∂
¯
RD

+ Ξ2
∂R̂D

∂
¯
RD

+ Ξ4 = 0 (B.15)

Calculating the derivatives of Ξ:

Ξ1 =
ϵL − 1

ϵL

[
(1− ωLL)− R̂L

∂ωLL

∂RL

]
> 0 (B.16)

at the optimal loan rate R̂L. This implies that Ξ1 must be positive – if it was negative

at R̂L, then R̂L would be a local minimum. Further, it was assumed that parameters and

functional forms are such that at the (unique) local maximum Ξ1 ̸= 0 to ensure that the

implicit function theorem can be applied. Section C establishes some sufficient conditions

for this assumption to hold.

Next,

Ξ2 = −
(
ϵL − 1

ϵL

)
∂ωLL

∂ω̄

∂ω̄

∂RD
RL (B.17)

where from Eq. (6):
∂ω̄

∂RD
= − D̄

R̂LL(R̂L)
(B.18)

since it was assumed that ω̄ ∈ (0, 1) in the statement of the proposition; and further:

∂R̂D

∂R
=


0 if R < R∗

ϵD
ϵD−1 if R > R∗

and else does not exist

(B.19)
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as shown in Lemma 1. Lastly, Ξ4 = 0.Hence:

∂R̂L

∂
¯
RD

= −∂ωLL

∂ω̄

∂RD

∂
¯
RD

D̄

L(R̂L)

1

(1− ωLL)− R̂L
∂ωLL

∂RL


< 0 if R < R∗

does not exist if R = R∗

= 0 else

(B.20)

Alternative Proof of Proposition 2.

The optimal loan rate R̂L is characterized by Eq. (B.12). The equation defines R̂L as

an implicit function of R and
¯
RD:

Ξ(R̂L(R,
¯
RD), R̂D(R,

¯
RD), R,

¯
RD) = (1− ωLL)

(
ϵL − 1

ϵL

)
R̂L −R = 0 (B.21)

Let Ξi denote the derivative of Ξ with respect to it’s i’th argument. Differentiating Ξ with

respect to
¯
RD yields:

Ξ1
∂R̂L

∂
¯
RD

+ Ξ2
∂R̂D

∂
¯
RD

+ Ξ4 = 0 (B.22)

Calculating the derivatives of Ξ:

Ξ1 =
ϵL − 1

ϵL

[
(1− ωLL)− R̂L

∂ωLL

∂RL

]
> 0 (B.23)

at the optimal loan rate R̂L. This implies that Ξ1 must be positive – if it was negative

at R̂L, then R̂L would be a local minimum. Further, it was assumed that parameters and

functional forms are such that at the (unique) local maximum Ξ1 ̸= 0 to ensure that the

implicit function theorem can be applied. Section C establishes some sufficient conditions

for this assumption to hold.

Next,

Ξ2 = −
(
ϵL − 1

ϵL

)
∂ωLL

∂ω̄

∂ω̄

∂RD
RL (B.24)
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where from Eq. (6):
∂ω̄

∂RD
= − D̄

R̂LL(R̂L)
(B.25)

since it was assumed that ω̄ ∈ (0, 1) in the statement of the proposition; and further:

∂R̂D

∂R
=


0 if R < R∗

ϵD
ϵD−1 if R > R∗

and else does not exist

(B.26)

as shown in Lemma 1. Lastly, Ξ4 = 0.Hence:

∂R̂L

∂
¯
RD

= −∂ωLL

∂ω̄

∂RD

∂
¯
RD

D̄

L(R̂L)

1

(1− ωLL)− R̂L
∂ωLL

∂RL


< 0 if R < R∗

does not exist if R = R∗

= 0 else

(B.27)

Proof of Corollary 1. From Proposition 2 it is straightforward to show that a bank is

more likely to fail under the D-ZLB:

∂ω̄

∂
¯
RD

=
∂ω̄

∂RD︸ ︷︷ ︸
<0

∂RD

∂
¯
RD

+
∂ω̄

∂RL︸ ︷︷ ︸
>0

∂RL

∂
¯
RD︸ ︷︷ ︸
≤0


< 0 if R < R∗

does not exist if R = R∗

= 0 else

(B.28)

which follows from Eq. (B.25), Eq. (C.5) and Proposition 2.

Proof of Corollary 2. Differentiating Eq. (B.21) with respect to R yields:

Ξ1
∂RL

∂R
+ Ξ2

∂R̂D

∂R
+ Ξ3 = 0 (B.29)
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Ξ1 and Ξ2 have already been computed above in the proof of Proposition 2. Lastly:

Ξ3 = −ϵL − 1

ϵL

∂ωLL

∂R
R̂L − 1 (B.30)

∂ωLL

∂R
=

∂ωLL

∂ω̄

S

R̂LL(R̂L)
(B.31)

Thus, the pass-through of the monetary policy rate into loan rates is given by:

∂R̂L

∂R
=

∂ωLL

∂ω̄

ϵL − 1

ϵL

[
S

L(R̂L)
− D̄

L(R̂L)

∂R̂D

∂R

]
+ 1

ϵL − 1

ϵL

[
(1− ωLL)− R̂L

∂ωLL

∂RL

] (B.32)

which using the balance sheet identity L+ S = D, can be written as:

∂R̂L

∂R
=

∂ωLL

∂ω̄

ϵL − 1

ϵL

D̄

L(R̂L)

(
1− ∂R̂D

∂R

)
+ 1− ∂ωLL

∂ω̄

ϵL − 1

ϵL

ϵL − 1

ϵL

[
(1− ωLL)− R̂L

∂ωLL

∂RL

] (B.33)

where by Eq. (B.26) and ϵD < −1 we have that 1− ∂
ˆ
RD
∂R > 0. For the derivative ∂ωLL

∂ω̄ note

that by definition: ωLL =
∫ ω̄
0 ω f(ω)

F (ω̄)dω. Hence, by the Leibniz rule:

∂ωLL

∂ω̄
= ω̄

f(ω̄)

F (ω̄)
−
∫ ω̄

0
ω
f(ω)f(ω̄)

F (ω̄)2
dω (B.34)

And using the definition of ωLL, this simplifies to:

∂ωLL

∂ω̄
= (ω̄ − ωLL)

f(ω̄)

F (ω̄)
> 0 (B.35)
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Hence if ∂ωLL

∂ω̄ < ϵL
ϵL−1 (where ϵL

ϵL−1 > 1), then ∂
ˆ
RL
∂R > 0. This is a relatively weak sufficient

condition, which is for example fulfilled by the uniform distribution ω ∼ Unif [0, 1], in

which case ∂ωLL

∂ω̄ = 1
2 .

Proof of Corollary 3. Eq. (9) characterizes the loan rate as an (implicit) function

RL(R, ω̄) of the policy rate R and the default cut-off ω̄. The bank will therefore charge the

same loan rate for a given policy rate and default cutoff, independent of the deposit lower

bound. This is because (as shown in Proposition 2) the effect of the deposit lower bound

on the loan rate operates entirely through the change in the default cutoff. A change in the

deposit lower bound therefore does not affect the loan rate if the bank receives an additional

payoff ∆ = D̄
(
¯
RD1 − ϵD

ϵD−1R
)

from the government that exactly offsets the effect of the

change in the deposit lower bound, such that:

ω̄(
¯
RD1,∆) = 1− (

¯
RD1 −R)D̄ +RL(RL)−∆

RLL(RL)
= 1− ω̄(

¯
RD2, 0)

( ϵD
ϵD−1 − 1)RD̄ +RL(RL)

RLL(RL)

and hence R̂L = RL(R, ω̄(
¯
RD1,∆)) = RL(R, ω̄(

¯
RD2, 0).

Further, Lemma 1 implies that

∂RD

∂R


ϵD

ϵD−1 if R > R∗

does not exist if R = R∗

0 if R < R∗

(B.36)

Using this, Corollary 3 follows directly from Corollary 2:

∂R̂L

∂R

∣∣∣∣∣
R∗(

¯
RD1)>R,R,ω̄

− ∂R̂L

∂R

∣∣∣∣∣
R∗(

¯
RD2)<R,R,ω̄

=
∂ωLL

∂ω̄

D̄

L(R̂L)
[
(1− ωLL)− R̂L

∂ωLL

∂RL
|R̂L

] ϵD
ϵD − 1

> 0 (B.37)
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C Uniqueness and Conditions of Implicit Function

theorem

In order for Proposition 2 to characterize transmission of monetary policy, it is required

that the FOC Eq. (9) – denoted Ξ as in the previous section – admits a unique solution

and the conditions of the implicit function theorem are fulfilled.

Applicability of the Implicit Function Theorem In particular, this requires (a)

Ξ(R̂L(R,
¯
RD), R̂D(R,

¯
RD), R,

¯
RD) = 0, (b) Ξ1, Ξ2, Ξ3 and Ξ4 to be continuous in an open

set that contains the point (R,
¯
RD), R̂D(R,

¯
RD), R,

¯
RD) and (c) Ξ1 ̸= 0. Condition (a) is

fulfilled by definition for R̂L(R,
¯
RD). The conditions for the existence of such a loan rate

that solves the FOC have been established in Proposition 1. The relevant partial derivatives

for Condition (b) were detailed in the proof of Proposition 2. Condition (b) is fulfilled as

long as ∂ωLL

∂ω̄ is continuous. This is because sums and products of continuous functions are

continuous.

In the following, I shall therefore focus on condition (c) Ξ1 > 0. While I do not show

that the condition Ξ1 > 0 holds in general, I establish it for a specific example. Concretely,

it shall be shown that if ∂2ωLL

∂ω̄2 ≥ 0 and R <
¯
RD, no local maximum can involve Ξ1 > 0.

To see this, first note that from Eq. (B.12):

Π′′(R̂L) = L′(RL)F (ω̄)Ξ1

Π′′(R̂L) = L′(RL)F (ω̄)
ϵL − 1

ϵL

[
(1− ωLL)−RL

∂ωLL

∂RL

]
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Assume that Π′′(R̂L) = 0. But then it can be shown that Π′′′(R̂L) ̸= 0, such that R̂L is a

saddle point not a local maximum:

Π′′′(R̂L) =

(
L′′(RL)F (ω̄) + L′(RL)f(ω̄)

∂ω̄

∂RL

)
[(1− ωLL)−RL

∂ωLL

∂RL
]︸ ︷︷ ︸

=0

+

+ L′(RL)F (ω̄)
ϵL − 1

ϵL

[
−2

∂ωLL

∂RL
− ∂2ωLL

∂R2
L

RL

]
(C.1)

As long as the bank does not always fail, L′(RL)F (ω̄) < 0, hence we can focus on Ξ11.

From Eq. (B.23):

Ξ11 =
ϵL − 1

ϵL

[
−2

∂ωLL

∂RL
− ∂2ωLL

∂R2
L

RL

]
(C.2)

We know that:

∂ωLL

∂RL
=

∂ωLL

∂ω̄

∂ω̄

∂RL
(C.3)

∂ω̄

∂RL
=

[
((1− ω̄)RL −R)L′(RL) + (1− ω̄)L(RL)

RLL(RL)

]
(C.4)

Using the assumption of iso-elastic demand, Eq. (C.4) can be written as:

∂ω̄

∂RL
=

1

RL

[
(1− ω̄)(1− ϵL) +

R

RL
ϵL

]
(C.5)

Note that at the optimum: R
RL

= (1− ωLL) ϵL−1
ϵL

, such that:

∂ωLL

∂RL
|RL=R̂L

=
∂ωLL

∂ω̄

[
(1− ω̄)(1− ϵL) + (1− ωLL)(ϵL − 1)

]
=

∂ωLL

∂ω̄
(ωLL−ω̄)(1−ϵL) ≥ 0

(C.6)
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where the sign follows from ϵL > 1, Eq. (B.35) and the fact that ωLL ≤ ω̄, with strict

inequality whenever ω̄ ∈ (0, 1).

Next, we have:
∂2ωLL

∂R2
L

=
∂ωLL

∂ω̄

∂2ω̄

∂R2
L

+
∂2ωLL

∂ω̄2

(
∂ω̄

∂RL

)2

(C.7)

where:

∂2ω̄

∂R2
L

= − ∂ω̄

∂RL

[
1

RL
(1− ϵL)

]
−
[
(1− ω̄)(1− ϵL)

R2
L

+ 2
R

R3
L

ϵL

]
(C.8)

=⇒ ∂2ω̄

∂R2
L

RL = − ∂ω̄

∂RL
(1− ϵL)−

∂ω̄

∂RL
− R

R2
L

ϵL (C.9)

Using Eq. (C.7) and (C.9), it follows that:

−2
∂ωLL

∂RL
− ∂2ωLL

∂R2
L

RL = −2
∂ωLL

∂RL
+

∂ωLL

∂ω̄

(
∂ω̄

∂RL
(1− ϵL) +

∂ω̄

∂RL
+

R

R2
L

ϵL

)
−RL

∂2ωLL

∂ω̄2

(
∂ω̄

∂RL

)2

=
∂ωLL

∂ω̄

[
∂ω̄

∂RL
(−ϵL) +

R

R2
L

ϵL

]
−RL

∂2ωLL

∂ω̄2

(
∂ω̄

∂RL

)2

=
∂ωLL

∂ω̄

[
∂ω̄

∂RL
− R

R2
L

]
(−ϵL)−RL

∂2ωLL

∂ω̄2

(
∂ω̄

∂RL

)2

(C.10)

Using Eq. (C.5), this simplifies to:

−2
∂ωLL

∂RL
− ∂2ωLL

∂R2
L

RL =
∂ωLL

∂ω̄

[
(1− ω̄)

RL
− R

R2
L

]
(−ϵL)(1− ϵL)−RL

∂2ωLL

∂ω̄2

(
∂ω̄

∂RL

)2

(C.11)

=
∂ωLL

∂ω̄

(RD −R)D(RD)

R2
LL(RL)

ϵL(ϵL − 1)−RL
∂2ωLL

∂ω̄2

(
∂ω̄

∂RL

)2

(C.12)

Using Eq. (C.5) allows to write this as:

− 2
∂ωLL

∂RL
− ∂2ωLL

∂R2
L

RL =
∂ωLL

∂ω̄
ϵL(ϵL − 1)

(RD −R)D(RD)

R2
LL(RL)

− ∂2ωLL

∂ω̄2

(ωLL − ω̄)2(ϵL − 1)2

RL

(C.13)
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Plugging this back into Eq. (C.2) yields:

Ξ11 =
∂ωLL

∂ω̄
(ϵL − 1)2

(RD −R)D(RD)

R2
LL(RL)

+
∂2ωLL

∂ω̄2

(ωLL − ω̄)2

RL

(ϵL − 1)3

ϵL
(C.14)

Such that under negative interest rates (R <
¯
RD), the first term is positive. The second

term is positive or zero if ∂2ωLL

∂ω̄2 ≥ 0. Hence, if ∂2ωLL

∂ω̄2 ≥ 0 and ω̄ ∈ (0, 1): Π′′(R̂L) = 0 =⇒

Π′′′(R̂L) < 0. This contradicts that R̂L is a local maximum. Hence, under policy rates

R <
¯
RD any local maximum must involve Π′′(R̂L) < 0 if ∂2ωLL

∂ω̄2 ≤ 0 (and cannot involve

Π′′(R̂L) = 0). Similarly, under a uniform distribution (∂
2ωLL

∂ω̄2 = 0): Π′′(R̂L) = 0 ⇐⇒ R =

¯
RD. Hence, R <

¯
RD is a sufficient (but not necessary) condition for Π′′(R̂L) > 0 under a

uniform distribution of ω.

Uniqueness: Example Assume the conditions of Proposition 1 are fulfilled, such that

some RL exists that solves the FOC:

(1− ωLL)

(
ϵL − 1

ϵL
RL

)
−R = 0

For the sake of providing an example, consider ω ∼ Unif [0, 1]. Focus on the case of a bank

with an interior default probability ω̄ ∈ (0, 1), since this is the case which Proposition 2

focuses on. Then, the FOC is:

(
1− 1

2
ω̄

)(
ϵL − 1

ϵL
RL

)
= R (C.15)
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By definition of ω̄:

(
1− 1

2
ω̄

)
RL = RL − 1

2

(
1− (RD −R)D(RD) +RL(RL)

RLL(RL)

)
(C.16)

=
1

2

(
RL + (RD −R)

D(RD)

L(RL)
+R

)
(C.17)

=
1

2
(RL + (RD −R)D(RD)AR

ϵ
L +R) (C.18)

where the last line uses the definition of L(RL). Clearly, this is increasing in RL if RD−R ≥

0 (i.e. when R ≤
¯
RD)). A sufficient conditions for a unique maximum under a uniform

distribution is therefore R ≤
¯
RD.
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